Bayesian Constrained Energy Minimization for Hyperspectral Target Detection

被引:12
作者
Zhang, Jing [1 ,2 ,3 ]
Zhao, Rui [1 ,2 ,3 ]
Shi, Zhenwei [1 ,2 ,3 ]
Zhang, Ning [4 ]
Zhu, Xinzhong [4 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[3] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
[4] Shanghai Aerosp Elect Technol Inst, Shanghai 201109, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
Hyperspectral imaging; Object detection; Detectors; Estimation; Task analysis; Gaussian distribution; Feature extraction; Bayesian; distributional estimate; hyperspectral target detection (HTD); IMAGE CLASSIFICATION; DETECTION ALGORITHMS;
D O I
10.1109/JSTARS.2021.3104908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For better performance of hyperspectral target detectors, the prior target spectrum is expected to be accurate and consistent with the target spectrum in the hyperspectral image to be detected. The existing hyperspectral target detection algorithms usually assume that the prior target spectrum is highly reliable. However, the label obtained is not always precise in practice, and pixels of the same object may have quite different spectra. Since it is hard to acquire a highly reliable prior target spectrum in some application scenarios, we propose a Bayesian constrained energy minimization (B-CEM) method for hyperspectral target detection. Instead of the point estimation of the target spectrum, we infer the posterior distribution of the true target spectrum based on the prior target spectrum. Specifically, considering the characteristics of hyperspectral image and target detection task, we adopt the Dirichlet distribution to approximate the true target spectrum. Experimental results on three datasets demonstrate the effectiveness of the proposed B-CEM when the known target spectrum is noisy or inconsistent with the true target spectrum. The necessity to approximate the true target spectrum is also proved. Generally, the distributional estimate achieves better performance than using the known target spectrum directly.
引用
收藏
页码:8359 / 8372
页数:14
相关论文
共 47 条
[1]   Hyperspectral Unmixing on GPUs and Multi-Core Processors: A Comparison [J].
Bernabe, Sergio ;
Sanchez, Sergio ;
Plaza, Antonio ;
Lopez, Sebastian ;
Benediktsson, Jon Atli ;
Sarmiento, Roberto .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) :1386-1398
[2]   Kernel spectral angle mapper [J].
Camps-Valls, G. .
ELECTRONICS LETTERS, 2016, 52 (14) :1218-1219
[3]   Hyperspectral Target Detection: Hypothesis Testing, Signal-to-Noise Ratio, and Spectral Angle Theories [J].
Chang, Chein-, I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[4]   An Effective Evaluation Tool for Hyperspectral Target Detection: 3D Receiver Operating Characteristic Curve Analysis [J].
Chang, Chein-, I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06) :5131-5153
[5]   Constrained band selection for hyperspectral imagery [J].
Chang, Chein-I ;
Wang, Su .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1575-1585
[6]   Orthogonal Subspace Projection Using Data Sphering and Low-Rank and Sparse Matrix Decomposition for Hyperspectral Target Detection [J].
Chang, Chein-I ;
Chen, Jie .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10) :8704-8722
[7]   An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [J].
Chang, CI .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) :1927-1932
[8]   How to design synthetic images to validate and evaluate hyperspectral imaging algorithms [J].
Chang, Yu-Cherng Channing ;
Ren, Hsuan ;
Chang, Chein-, I ;
Rand, Robert S. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966
[9]   Sparse Representation for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) :629-640
[10]   Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) :676-680