ON THE FIXED-POINT TYPE SYLVESTER MATRIX EQUATIONS OVER COMPLETE COMMUTATIVE DIOIDS

被引:0
作者
Hashemi, Behnam [1 ,2 ]
Khalilabadi, Mahtab Mirzaei [1 ]
Tavakolipour, Hanieh [1 ]
机构
[1] Shiraz Univ Technol, Fac Basic Sci, Dept Math, Shiraz 71555313, Iran
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
关键词
Dioid; Sylvester matrix equation; Fixed-point type equations; Tensor product; Minimum cardinality path problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper extends the concept of tropical tensor product defined by Butkovic and Fiedler to general idempotent dioids. Then, it proposes an algorithm in order to solve the fixed-point type Sylvester matrix equations of the form X = A circle times X circle plus X circle times B circle plus C. An application is discussed in efficiently solving the minimum cardinality path problem in Cartesian product graphs.
引用
收藏
页码:882 / 891
页数:10
相关论文
共 9 条
[1]  
[Anonymous], 1984, Graphs and Algorithms
[2]  
[Anonymous], 2007, PROC 19 INT C NEURAL
[3]  
Baccelli F.L., 1993, Synchronization and Linearity
[4]  
Butkovic P., 201102 U BIRM SCH MA
[5]   ALGEBRAIC TOOLS FOR THE PERFORMANCE EVALUATION OF DISCRETE EVENT SYSTEMS [J].
COHEN, G ;
MOLLER, P ;
QUADRAT, JP ;
VIOT, M .
PROCEEDINGS OF THE IEEE, 1989, 77 (01) :39-58
[6]  
Cormen T., 2001, Introduction to Algorithms
[7]  
Gondran M, 2008, OPER RES COMPUT SCI, V41, P1
[8]  
Hammack Richard, 2011, Handbook of Product Graphs
[9]  
Vishwanathan SVN, 2010, J MACH LEARN RES, V11, P1201