Design of an analyzer based on a quantum cascade laser for substance identification by infrared reflected radiation

被引:0
作者
Anfimov, Dmitriy R. [1 ]
Fufurin, Igor L. [1 ]
Golyak, Igor S. [1 ]
Morozov, Andrey N. [1 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow, Russia
来源
INTEGRATED OPTICS: DESIGN, DEVICES, SYSTEMS AND APPLICATIONS VI | 2021年 / 11775卷
关键词
infrared spectroscopy; identification; quantum-cascade laser; Kramers-Kronig relations; diffuse reflectance; SPECTRA; RANGE;
D O I
10.1117/12.2589238
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider a setup designed to study infrared radiation reflected from liquid and solid substances located on various substrates in this work. We describe the optical and principal scheme for the experimental setup. We use a laser setup that contains one Alpes Lasers quantum-cascade laser chip with a tuning range 1000 - 1300 1/cm with peak power up to 480 mW and 1 MHz repetition rate. Setup includes two HgCdTe thermoelectrically cooled sensors as reference and signal detector. Each sensor is equipped TEC controller, and the amplifier is mounted. The signal is digitized using a 24-bit ADC with a frequency of 1.5 MHz. Measurement time is about 1 sec. Recently experimentally reached sensitivity is less than one microgram per square cm on various substrates. We estimate the device's possible weight to about 5 kg and the sensitivity of about microgram per square cm. This work presents the results of processing the diffuse reflectance spectra. The diffuse reflectance spectra have low selectivity. So, we use calculational algorithms based on Kramers-Kronig transformations with extrapolation of spectra and phase correction. For substance identification using diffuse reflectance spectra, we use database consists of about 20 substances.
引用
收藏
页数:8
相关论文
共 15 条
[1]   Calculation technique of diffuse reflectance spectra using an ensemble of damped harmonic oscillators model for substances identification [J].
Anfimov, Dmitriy R. ;
Fufurin, Igor L. ;
Golyak, Igor S. ;
Tabalina, Anastasiya S. ;
Kurth, Steffen .
OPTICAL SENSING AND DETECTION VI, 2021, 11354
[2]   An imaging Fourier transform spectroradiometer with a multi-element photodetector for the spectral range of 7-14 μm [J].
Bashkin, S. V. ;
Karfidov, A. O. ;
Kornienko, V. N. ;
Lel'kov, M. V. ;
Mironov, A. I. ;
Morozov, A. N. ;
Svetlichnyi, S. I. ;
Tabalin, S. E. ;
Fufurin, I. L. .
OPTICS AND SPECTROSCOPY, 2016, 121 (03) :449-454
[3]   High-performance superlattice quantum cascade lasers [J].
Capasso, F ;
Tredicucci, A ;
Gmachl, C ;
Sivco, DL ;
Hutchinson, AL ;
Cho, AY ;
Scamarcio, G .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (03) :792-807
[4]   A DRIFTS STUDY OF THE FORMATION OF SURFACE GROUPS ON CARBON BY OXIDATION [J].
FANNING, PE ;
VANNICE, MA .
CARBON, 1993, 31 (05) :721-730
[5]   Numerical techniques for infrared spectra analysis of organic and inorganic volatile compounds for biomedical applications [J].
Fufurin, Igor L. ;
Anfimov, Dmitry R. ;
Kareva, Elizaveta R. ;
Scherbakova, Anastasiya, V ;
Demkin, Pavel P. ;
Morozov, Andrey N. ;
Golyak, Igor S. .
OPTICAL ENGINEERING, 2021, 60 (08)
[6]   Identification of substances from diffuse reflectance spectra of a broadband quantum cascade laser using Kramers-Kronig relations [J].
Fufurin, Igor L. ;
Tabalina, Anastasiia S. ;
Morozov, Andrey N. ;
Golyak, Igor S. ;
Svetlichnyi, Sergey I. ;
Anfimov, Dmitry R. ;
Kochikov, Igor V. .
OPTICAL ENGINEERING, 2020, 59 (06)
[7]   Real-time breath gas analysis of CO and CO2 using an EC-QCL [J].
Ghorbani, Ramin ;
Schmidt, Florian M. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (05)
[8]   The Problems of Passive Remote Sensing of the Earth's Surface in the Range of 1.2-1.6 GHz [J].
Golubkov, Gennady, V ;
Manzhelii, Mikhail, I ;
Berlin, Alexandr A. ;
Eppelbaum, Lev, V ;
Lushnikov, Alexey A. ;
Morozov, Igor I. ;
Dmitriev, Alexey, V ;
Adamson, Sergey O. ;
Dyakov, Yuri A. ;
Morozov, Andrey N. ;
Golubkov, Maxim G. .
ATMOSPHERE, 2020, 11 (06)
[9]   Identification of Chemical Compounds by the Reflected Spectra in the Range of 5.3-12.8 μm Using a Tunable Quantum Cascade Laser [J].
Golyak, I. S. ;
Morozov, A. N. ;
Svetlichnyi, S., I ;
Tabalina, A. S. ;
Fufurina, I. L. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 13 (04) :557-564
[10]   Raman Scattering in Nanocomposite Photonic Crystals [J].
Gorelik, V. S. ;
Bi, Dongxue ;
Fei, Guang Tao ;
Xu, Shao Hui ;
Gao, Xu Dong .
INORGANIC MATERIALS, 2019, 55 (04) :355-364