Small divisors of Bernoulli sums

被引:8
作者
Weber, Michel
机构
[1] Univ Strasbourg 1, Math IRMA, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2007年 / 18卷 / 02期
关键词
Bernoulli random variables; i.i.d; theta functions; divisors;
D O I
10.1016/S0019-3577(07)80023-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let epsilon = {epsilon(i), i >= 1} be a sequence of independent Bernoulli random variables (P{epsilon(i) = 0) = P{epsilon(i) = 1} = 1/2) with basic probability space (Omega, A, P). Consider the sequence of partial sums B-n = epsilon(1) + ... + epsilon(n), n = 1,2,.... We obtain an asymptotic estimate for the probability P{P-(B-n) > zeta} for zeta <= n(c/log log n), c a positive constant.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 9 条
[1]  
[Anonymous], RESULTS MATH
[2]  
[Anonymous], RESULTS MATH
[3]  
BERKES I, IN PRESS P AM MATH S
[4]  
Mitrinovic D. S., 1970, Analytic inequalities, V1
[5]  
RENYI A, 1970, HOLEDN DAY SERIES PR
[6]  
TENENBAUM G, 1990, REV I ELIE CARTAN, V13
[7]   On the order of magnitude of the divisor function [J].
Weber, M .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (02) :377-382
[8]   An arithmetical property of Rademacher sums [J].
Weber, M .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (01) :133-149
[9]  
WEBER M, 2005, PERIOD MATH HUNG, V51, P1