Moment bounds and asymptotics for the stochastic wave equation

被引:8
作者
Chen, Le [1 ]
Dalang, Robert C. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
关键词
Nonlinear stochastic wave equation; Hyperbolic Anderson model; Intermittency; Growth indices; SMOOTHNESS; EXISTENCE; VALUES;
D O I
10.1016/j.spa.2014.11.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the stochastic wave equation on the real line driven by space time white noise and with irregular initial data. We give bounds on higher moments and, for the hyperbolic Anderson model, explicit formulas for second moments. These bounds imply weak intermittency and allow us to obtain sharp bounds on growth indices for certain classes of initial conditions with unbounded support. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1605 / 1628
页数:24
相关论文
共 38 条
[1]  
Balan R., 2013, ARXIV13110021
[2]   Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds [J].
Brzezniak, Z. ;
Ondrejat, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) :1624-1653
[3]   Strong solutions to stochastic wave equations with values in Riemannian manifolds [J].
Brzezniak, Zdzislaw ;
Ondrejat, Martin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) :449-481
[4]   STOCHASTIC INTEGRALS IN PLANE [J].
CAIROLI, R ;
WALSH, JB .
ACTA MATHEMATICA, 1975, 134 (1-2) :111-183
[5]   RANDOM NONLINEAR-WAVE EQUATIONS - PROPAGATION OF SINGULARITIES [J].
CARMONA, R ;
NUALART, D .
ANNALS OF PROBABILITY, 1988, 16 (02) :730-751
[6]   RANDOM NON-LINEAR WAVE-EQUATIONS - SMOOTHNESS OF THE SOLUTIONS [J].
CARMONA, R ;
NUALART, D .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :469-508
[7]  
CARMONA RA, 1994, MEM AM MATH SOC, V108, pR3
[8]  
Chen L., 2013, THESIS ECOLE POLYTEC, V5712
[9]  
Chen L., 2014, ANN PROBAB IN PRESS
[10]  
Chen L., 2014, ARXIV14016506