Groups of Prime Power Order Isomorphic to Their Automorphism Groups

被引:0
作者
Abdollahi, Alireza [1 ]
Rahmani, Nafiseh [1 ]
机构
[1] Univ Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan 8174673441, Iran
关键词
Automorphism group; p-group; Coclass;
D O I
10.1007/s41980-021-00637-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there is no finite non-trivial p-group of coclass at most 4 except the dihedral group of order 8 which is isomorphic to its automorphism group.
引用
收藏
页码:2079 / 2087
页数:9
相关论文
共 9 条
[1]   ON NONINNER 2-AUTOMORPHISMS OF FINITE 2-GROUPS [J].
Abdollahi, Alireza ;
Ghoraishi, S. Mohsen .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (02) :227-231
[2]   AUTOMORPHISMS OF A P-GROUP [J].
ADNEY, JE ;
YEN, T .
ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (01) :137-&
[3]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
[4]   On a question about automorphisms of finite p-groups [J].
Cutolo, G .
JOURNAL OF GROUP THEORY, 2006, 9 (02) :231-250
[5]   Automorphism groups of 2-groups [J].
Eick, Bettina .
JOURNAL OF ALGEBRA, 2006, 300 (01) :91-101
[6]  
Khukhro E.I, 2020, UNSOLVED PROBLEMS GR, V19
[7]  
LeedhamGreen C. R., 2002, STRUCTURE GROUPS PRI, V27, pxii+334
[8]   Some questions about p-groups [J].
Mann, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 67 :356-379
[9]  
SHAHRIARI S, 1987, ARCH MATH, V48, P193