Functional Analysis of the Group 4 Late Embryogenesis Abundant Proteins Reveals Their Relevance in the Adaptive Response during Water Deficit in Arabidopsis

被引:179
作者
Olvera-Carrillo, Yadira [1 ]
Campos, Francisco [1 ]
Luis Reyes, Jose [1 ]
Garciarrubio, Alejandro [2 ]
Covarrubias, Alejandra A. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Biol Mol Plantas, Cuernavaca 62250, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Mol Microbiol, Cuernavaca 62250, Morelos, Mexico
关键词
CHLORELLA-VULGARIS C-27; LENGTH CDNA MICROARRAY; BARLEY HVA1 GENE; LEA PROTEINS; CRYOPROTECTIVE ACTIVITY; ESCHERICHIA-COLI; IN-VITRO; SACCHAROMYCES-CEREVISIAE; PLANT TRANSFORMATION; GEL-ELECTROPHORESIS;
D O I
10.1104/pp.110.158964
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Late-Embryogenesis Abundant (LEA) proteins accumulate to high levels during the last stages of seed development, when desiccation tolerance is acquired, and in vegetative and reproductive tissues under water deficit, leading to the hypothesis that these proteins play a role in the adaptation of plants to this stress condition. In this work, we obtained the accumulation patterns of the Arabidopsis (Arabidopsis thaliana) group 4 LEA proteins during different developmental stages and plant organs in response to water deficit. We demonstrate that overexpression of a representative member of this group of proteins confers tolerance to severe drought in Arabidopsis plants. Moreover, we show that deficiency of LEA proteins in this group leads to susceptible phenotypes upon water limitation, during germination, or in mature plants after recovery from severe dehydration. Upon recovery from this stress condition, mutant plants showed a reduced number of floral and axillary buds when compared with wild-type plants. The lack of these proteins also correlates with a reduced seed production under optimal irrigation, supporting a role in fruit and/or seed development. A bioinformatic analysis of group 4 LEA proteins from many plant genera showed that there are two subgroups, originated through ancient gene duplication and a subsequent functional specialization. This study represents, to our knowledge, the first genetic evidence showing that one of the LEA protein groups is directly involved in the adaptive response of higher plants to water deficit, and it provides data indicating that the function of these proteins is not redundant to that of the other LEA proteins.
引用
收藏
页码:373 / 390
页数:18
相关论文
共 84 条
[1]   TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI [J].
AMANN, E ;
OCHS, B ;
ABEL, KJ .
GENE, 1988, 69 (02) :301-315
[2]  
[Anonymous], 1989, Molecular Cloning: A Laboratory
[3]   HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection [J].
Babu, RC ;
Zhang, JX ;
Blum, A ;
Ho, THD ;
Wu, R ;
Nguyen, HT .
PLANT SCIENCE, 2004, 166 (04) :855-862
[4]   MEME: discovering and analyzing DNA and protein sequence motifs [J].
Bailey, Timothy L. ;
Williams, Nadya ;
Misleh, Chris ;
Li, Wilfred W. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W369-W373
[5]   Combining evidence using p-values: application to sequence homology searches [J].
Bailey, TL ;
Gribskov, M .
BIOINFORMATICS, 1998, 14 (01) :48-54
[6]   The enigmatic LEA proteins and other hydrophilins [J].
Battaglia, Marina ;
Olvera-Carrillo, Yadira ;
Garciarrubio, Alejandro ;
Campos, Francisco ;
Covarrubias, Alejandra A. .
PLANT PHYSIOLOGY, 2008, 148 (01) :6-24
[7]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[8]   Cryoprotective activity of a cold-induced dehydrin purified from barley [J].
Bravo, LA ;
Gallardo, J ;
Navarrete, A ;
Olave, N ;
Martínez, J ;
Alberdi, M ;
Close, TJ ;
Corcuera, LJ .
PHYSIOLOGIA PLANTARUM, 2003, 118 (02) :262-269
[9]   Plant responses to water deficit [J].
Bray, EA .
TRENDS IN PLANT SCIENCE, 1997, 2 (02) :48-54
[10]   Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae [J].
Browne, JA ;
Dolan, KM ;
Tyson, T ;
Goyal, K ;
Tunnacliffe, A ;
Burnell, AM .
EUKARYOTIC CELL, 2004, 3 (04) :966-975