Pseudofinite groups and VC-dimension

被引:3
作者
Conant, Gabriel [1 ]
Pillay, Anand [2 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46656 USA
关键词
Pseudofinite groups; VC-dimension; NIP formulas;
D O I
10.1142/S0219061321500094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop "local NIP group theory" in the context of pseudofinite groups. In particular, given a sufficiently saturated pseudofinite structure G expanding a group, and left invariant NIP formula delta(x; (y) over bar), we prove various aspects of "local fsg" for the right-stratified formula delta(r) (x; (y) over bar, u) := delta(x . u; (y) over bar). This includes a delta(r)-type-definable connected component, uniqueness of the pseudofinite counting measure as a left-invariant measure on delta(r)-formulas and generic compact domination for delta(r)-definable sets.
引用
收藏
页数:23
相关论文
共 19 条
[1]   DEFINABLY AMENABLE NIP GROUPS [J].
Chernikov, Artem ;
Simon, Pierre .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 31 (03) :609-641
[2]   A group version of stable regularity [J].
Conant, G. ;
Pillay, A. ;
Terry, C. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2020, 168 (02) :405-413
[3]  
Conant G., 180204246MATHCO ARXI 180204246MATHCO ARXI
[4]   A Szemeredi-type regularity lemma in abelian groups, with applications [J].
Green, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (02) :340-376
[5]   EPSILON-NETS AND SIMPLEX RANGE QUERIES [J].
HAUSSLER, D ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (02) :127-151
[6]   GROUPS DEFINABLE IN LOCAL-FIELDS AND PSEUDO-FINITE FIELDS [J].
HRUSHOVSKI, E ;
PILLAY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 85 (1-3) :203-262
[7]  
Hrushovski E, 2008, J AM MATH SOC, V21, P563
[8]  
Hrushovski E, 2013, T AM MATH SOC, V365, P2341
[9]   On NIP and invariant measures [J].
Hrushovski, Ehud ;
Pillay, Anand .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (04) :1005-1061
[10]   ALMOST TIGHT BOUNDS FOR EPSILON-NETS [J].
KOMLOS, J ;
PACH, J ;
WOEGINGER, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (02) :163-173