Mechanism of ferroelectric resistive switching in Bi0.9La0.1FeO3 thin films

被引:9
作者
Gao, R. L. [1 ,2 ]
Fu, C. L. [1 ]
Cai, W. [1 ]
Chen, G. [1 ]
Deng, X. L. [1 ]
Yang, H. W. [2 ]
Sun, J. R. [2 ]
Zhao, Y. G. [3 ]
Shen, B. G. [2 ]
机构
[1] Chongqing Univ Sci & Technol, Sch Met & Mat Engn, Chongqing 401331, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Switching mechanism; Resistive switching; Bismuth lanthanum ferrite; Thin films; Pulsed laser deposition; RESISTANCE; MEMORY; POLARIZATION;
D O I
10.1016/j.tsf.2015.03.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Resistive switching devices are considered as one of the most promising candidates for the next generation memories and nonvolatile logic applications. In this paper, we report an anomalous resistive switching effect in BiFeO3 based hetero-structures. Different from conventional resistive switching devices made of metal oxides, no forming process is needed to obtain a stable resistive switching effect in the ferroelectric resistive switching devices. Both positive and negative current peaks are observed under forward bias and reverse bias, respectively, suggesting that flexible Schottky-like barriers and conductive channels form at the top and bottom interfaces, which play important roles in the resistive switching of Ag/Bi0.9La0.1FeO3/La0.3Sr0.7MnO3 sandwiched structures. These flexible Schottky-like barriers may come from the migration of charged oxygen vacancies/ions under the electric field of sweeping bias and the redistribution of carriers with ferroelectric switching, while the conductive channel resulted from charged oxygen vacancies/ions. These results demonstrate promising prospects for application of the ferroelectric resistive switching effect at interfaces to nonvolatile memory. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 41 条
[1]   Coengineering of ferroelectric and exchange bias properties in BiFeO3 based heterostructures [J].
Allibe, J. ;
Infante, I. C. ;
Fusil, S. ;
Bouzehouane, K. ;
Jacquet, E. ;
Deranlot, C. ;
Bibes, M. ;
Barthelemy, A. .
APPLIED PHYSICS LETTERS, 2009, 95 (18)
[2]  
Baek I.G., 2004, IEDM, V587
[3]   The Nature of Polarization Fatigue in BiFeO3 [J].
Baek, Seung-Hyub ;
Folkman, Chad M. ;
Park, Jae-Wan ;
Lee, Sanghan ;
Bark, Chung-Wung ;
Tybell, Thomas ;
Eom, Chang-Beom .
ADVANCED MATERIALS, 2011, 23 (14) :1621-+
[4]   Combining half-metals and multiferroics into epitaxial heterostructures for spintronics [J].
Béa, H ;
Bibes, M ;
Sirena, M ;
Herranz, G ;
Bouzehouane, K ;
Jacquet, E ;
Fusil, S ;
Paruch, P ;
Dawber, M ;
Contour, JP ;
Barthélémy, A .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[5]   Crystallographic, magnetic, and ferroelectric structures of bulklike BiFeO3 thin films [J].
Bea, H. ;
Bibes, M. ;
Zhu, X. -H. ;
Fusil, S. ;
Bouzehouane, K. ;
Petit, S. ;
Kreisel, J. ;
Barthelemy, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (07)
[6]   Reproducible switching effect in thin oxide films for memory applications [J].
Beck, A ;
Bednorz, JG ;
Gerber, C ;
Rossel, C ;
Widmer, D .
APPLIED PHYSICS LETTERS, 2000, 77 (01) :139-141
[7]   Physics and Applications of Bismuth Ferrite [J].
Catalan, Gustau ;
Scott, James F. .
ADVANCED MATERIALS, 2009, 21 (24) :2463-2485
[8]   Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3-δ thin films -: art. no. 174423 [J].
Cauro, R ;
Gilabert, A ;
Contour, JP ;
Lyonnet, R ;
Medici, MG ;
Grenet, JC ;
Leighton, C ;
Schuller, IK .
PHYSICAL REVIEW B, 2001, 63 (17)
[9]   Unipolar resistive switching behavior of BiFeO3 thin films prepared by chemical solution deposition [J].
Chen, Shih-Wei ;
Wu, Jenn-Ming .
THIN SOLID FILMS, 2010, 519 (01) :499-504
[10]   Nonvolatile bipolar resistance switching effects in multiferroic BiFeO3 thin films on LaNiO3-electrodized Si substrates [J].
Chen, Xinman ;
Wu, Guangheng ;
Zhang, Hailei ;
Qin, Ni ;
Wang, Tao ;
Wang, Feifei ;
Shi, Wangzhou ;
Bao, Dinghua .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 100 (04) :987-990