Manipulating Crystallization for Simultaneous Improvement of Impact Strength and Heat Resistance of Plasticized Poly(l-lactic acid) and Poly(butylene succinate) Blends

被引:10
作者
Kajornprai, Todsapol [1 ]
Suttiruengwong, Supakij [2 ]
Sirisinha, Kalyanee [1 ]
机构
[1] Mahidol Univ, Fac Sci, Dept Chem, Bangkok 10400, Thailand
[2] Silpakorn Univ, Fac Engn & Ind Technol, Dept Mat Sci & Engn, Sanamchandra Palace Campus, Amphoe Muang 73000, Nakhon Pathom, Thailand
关键词
poly(lactic acid); poly(butylene succinate); impact strength; annealing; crystallization; heat resistance; TOUGHENING MODIFICATION; MECHANICAL-PROPERTIES; PLLA/PBS BLENDS; TOUGHNESS; BEHAVIOR; MORPHOLOGY; PLA; CRYSTALLINITY; COPOLYMERS; POLYMERS;
D O I
10.3390/polym13183066
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Crystalline morphology and phase structure play a decisive role in determining the properties of polymer blends. In this research, biodegradable blends of poly(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS) have been prepared by melt-extrusion and molded into specimens with rapid cooling. The crystalline morphology (e.g., crystallinity, crystal type and perfection) is manipulated by annealing the molded products from solid-state within a short time. This work emphasizes on the effects of annealing conditions on crystallization and properties of the blends, especially impact toughness and thermal stability. Phase-separation morphology with PBS dispersed particles smaller than 1 mu m is created in the blends. The blend properties are successfully dictated by controlling the crystalline morphology. Increasing crystallinity alone does not ensure the enhancement of impact toughness. A great improvement of impact strength and heat resistance is achieved when the PLLA/PBS (80/20) blends are plasticized with 5% medium molecular-weight poly(ethylene glycol), and simultaneously heat-treated at a temperature close to the cold-crystallization of PLLA. The plasticized blend annealed at 92 degrees C for only 10 min exhibits ten-fold impact strength over the starting PLLA and slightly higher heat distortion temperature. The microscopic study demonstrates the fracture mechanism changes from crazing to shear yielding in this annealed sample.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effect of chain extender on morphology and tensile properties of poly(L-lactic acid)/poly(butylene succinate-co-L-lactate) blends
    Nishida, Masakazu
    Liu, Xiangyu
    Furuya, Shun
    Nishida, Masahiro
    Takayama, Tetsuo
    Todo, Mitsugu
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [22] Changes in the crystallinity and mechanical properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blend with annealing process
    Chou, P. M.
    Mariatti, M.
    Zulkifli, A.
    Todo, M.
    POLYMER BULLETIN, 2011, 67 (05) : 815 - 830
  • [23] Study on Crystallization of Poly (lactic acid)/Poly (propylene succinate) Blends
    Yueagyen, Panadda
    Lertworasirikul, Amornrat
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (03) : 9609 - 9614
  • [24] Selective enzymatic degradation and porous morphology of poly (butylene succinate)/poly(lactic acid) blends
    Shi, Ke
    Bai, Zhenhui
    Su, Tingting
    Wang, Zhanyong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 126 : 436 - 442
  • [25] The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate)
    Pivsa-Art, Weraporn
    Fujii, Kazunori
    Nomura, Keiichiro
    Aso, Yuji
    Ohara, Hitomi
    Yamane, Hideki
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (08)
  • [26] Isothermal crystallization kinetics of talc-filled poly(lactic acid) and poly(butylene succinate) blends
    Weraporn Pivsa-Art
    Kazunori Fujii
    Keiichiro Nomura
    Yuji Aso
    Hitomi Ohara
    Hideki Yamane
    Journal of Polymer Research, 2016, 23
  • [27] Miscibility and properties of poly(L-lactic acid)/poly(butylene terephthalate) blends
    Di Lorenzo, Maria Laura
    Rubino, Paolo
    Cocca, Mariacristina
    EUROPEAN POLYMER JOURNAL, 2013, 49 (10) : 3309 - 3317
  • [28] Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends
    Zhao, Xipo
    Zhang, Dianfeng
    Yu, Songting
    Zhou, Hongyu
    Peng, Shaoxian
    E-POLYMERS, 2021, 21 (01) : 793 - 810
  • [29] Improved impact strength of poly(lactic acid) by incorporating poly(butylene succinate) and silicon dioxide nanoparticles
    Fan-Long Jin
    Rong-Rong Hu
    Soo-Jin Park
    Korean Journal of Chemical Engineering, 2020, 37 : 905 - 910
  • [30] Effects of Poly(ε-caprolactone) on the Properties of Poly(lactic acid)/Poly(butylene succinate) Blends
    Gu T.
    Zhu D.
    Zheng Q.
    Yu J.
    Lu S.
    Lu, Shengjun (sjlu@gzu.edu.cn), 2018, Sichuan University (34): : 42 - 47