Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals

被引:30
作者
Liu, Lixin [1 ]
Gong, Penglai [2 ,3 ]
Liu, Kailang [1 ]
Nie, Anmin [4 ]
Liu, Zhongyuan [4 ]
Yang, Sanjun [1 ]
Xu, Yongshan [1 ]
Liu, Teng [1 ]
Zhao, Yinghe [1 ]
Huang, Li [2 ]
Li, Huiqiao [1 ]
Zhai, Tianyou [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 5158055, Peoples R China
[3] Coll Phys Sci & Technol, Inst Life Sci & Green Dev, Key Lab Opt Elect Informat & Mat Hebei Prov, Baoding 071002, Peoples R China
[4] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
关键词
2D materials; decapsulation; electronics; inorganic molecular crystals; van der Waals encapsulation; EXFOLIATED BLACK PHOSPHORUS; TRANSISTORS; FUNCTIONALIZATION; PASSIVATION; AIR;
D O I
10.1002/adma.202106041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air-susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining-electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Enhanced device performances of WSe2-MoS2 van der Waals junction p-n diode by fluoropolymer encapsulation
    Jeon, Pyo Jin
    Min, Sung-Wook
    Kim, Jin Sung
    Raza, Syed Raza Ali
    Choi, Kyunghee
    Lee, Hee Sung
    Lee, Young Tack
    Hwang, Do Kyung
    Choi, Hyoung Joon
    Im, Seongil
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (12) : 2751 - 2758
  • [42] Van der Waals Heterostructure Based Field Effect Transistor Application
    Li, Jingyu
    Chen, Xiaozhang
    Zhang, David Wei
    Zhou, Peng
    CRYSTALS, 2018, 8 (01)
  • [43] Poly(vinyl alcohol)-Assisted Exfoliation of van der Waals Materials
    Li, Yaodong
    Weng, Shirui
    Niu, Rui
    Zhen, Weili
    Xu, Feng
    Zhu, Wenka
    Zhang, Changjin
    ACS OMEGA, 2022, : 38774 - 38781
  • [44] Towards superlubricity in nanostructured surfaces: the role of van der Waals forces
    Echeverrigaray, Fernando G.
    de Mello, Saron R. S.
    Leidens, Leonardo M.
    Maia da Costa, Marcelo E. H.
    Alvarez, Fernando
    Burgo, Thiago A. L.
    Michels, Alexandre F.
    Figueroa, Carlos A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (34) : 21949 - 21959
  • [45] An Intuitive Equivalent Circuit Model for Multilayer Van Der Waals Heterostructures
    Borah, Abhinandan
    Sebastian, Punnu Jose
    Nipane, Ankur
    Teherani, James T.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (10) : 4209 - 4215
  • [46] Ultrathin Multibridge Channel Transistor Enabled by van der Waals Assembly
    Huang, Xiaohe
    Liu, Chunsen
    Zeng, Senfeng
    Tang, Zhaowu
    Wang, Shuiyuan
    Chen, Xiaozhang
    Zhang, David Wei
    Zhou, Peng
    ADVANCED MATERIALS, 2021, 33 (37)
  • [47] Reconfigurable Multifunctional van der Waals Ferroelectric Devices and Logic Circuits
    Ram, Ankita
    Maity, Krishna
    Marchand, Cedric
    Mahmoudi, Aymen
    Kshirsagar, Aseem Rajan
    Soliman, Mohamed
    Taniguchi, Takashi
    Watanabe, Kenji
    Doudin, Bernard
    Ouerghi, Abdelkarim
    Reichardt, Sven
    O'Connor, Ian
    Dayen, Jean-Francois
    ACS NANO, 2023, 17 (21) : 21865 - 21877
  • [48] Broadband Van-der-Waals Photodetector Driven by Ferroelectric Polarization
    Kim, Sungjun
    Lee, Sunghun
    Oh, Seyong
    Lee, Kyeong-Bae
    Lee, Je-Jun
    Kim, Byeongchan
    Heo, Keun
    Park, Jin-Hong
    SMALL, 2024, 20 (03)
  • [49] Van der Waals semiconductor embedded transparent photovoltaic for broadband optoelectronics
    Kumar, Naveen
    Patel, Malkeshkumar
    Lim, Donggun
    Lee, Kibum
    Kim, Joondong
    SURFACES AND INTERFACES, 2022, 34
  • [50] Topological van der Waals Contact for Two-Dimensional Semiconductors
    Ghods, Soheil
    Lee, Hyunjin
    Choi, Jun-Hui
    Moon, Ji-Yun
    Kim, Sein
    Kim, Seung-Il
    Kwun, Hyung Jun
    Josline, Mukkath Joseph
    Kim, Chan Young
    Hyun, Sang Hwa
    Kim, Sang Won
    Son, Seok-Kyun
    Lee, Taehun
    Lee, Yoon Kyeung
    Heo, Keun
    Novoselov, Kostya. S.
    Lee, Jae-Hyun
    ACS NANO, 2024, 18 (38) : 26192 - 26200