Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals

被引:30
|
作者
Liu, Lixin [1 ]
Gong, Penglai [2 ,3 ]
Liu, Kailang [1 ]
Nie, Anmin [4 ]
Liu, Zhongyuan [4 ]
Yang, Sanjun [1 ]
Xu, Yongshan [1 ]
Liu, Teng [1 ]
Zhao, Yinghe [1 ]
Huang, Li [2 ]
Li, Huiqiao [1 ]
Zhai, Tianyou [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 5158055, Peoples R China
[3] Coll Phys Sci & Technol, Inst Life Sci & Green Dev, Key Lab Opt Elect Informat & Mat Hebei Prov, Baoding 071002, Peoples R China
[4] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
关键词
2D materials; decapsulation; electronics; inorganic molecular crystals; van der Waals encapsulation; EXFOLIATED BLACK PHOSPHORUS; TRANSISTORS; FUNCTIONALIZATION; PASSIVATION; AIR;
D O I
10.1002/adma.202106041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air-susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining-electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Reconfigurable InSe Electronics with van der Waals Integration
    Hu, Siqi
    Luo, Xiaoguang
    Xu, Jinpeng
    Zhao, Qinghua
    Cheng, Yingchun
    Wang, Tao
    Jie, Wanqi
    Castellanos-Gomez, Andres
    Gan, Xuetao
    Zhao, Jianlin
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (05)
  • [22] A new device architecture based on two dimensional van der Waals heterostructures
    Guo, Zhongxun
    Zan, Wu
    Zhou, Peng
    Bao, Wenzhong
    Zhang, David Wei
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2017, : 674 - 677
  • [23] A generic method to control hysteresis and memory effect in Van der Waals hybrids
    Ahmed, Tanweer
    Islam, Saurav
    Paul, Tathagata
    Hariharan, N.
    Elizabeth, Suja
    Ghosh, Arindam
    MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
  • [24] CMOS-Compatible Fabrication of 2D Semiconductor-Based CFETs via High-k Dielectric van der Waals Encapsulation
    Yan, Yujia
    Yan, Tao
    Wang, Feng
    Zhu, Yuhan
    Li, Shuhui
    Cai, Yuchen
    Zhang, Fuyuan
    Wang, Yanrong
    Liu, Xiaolin
    Xu, Kai
    He, Jun
    Zhan, Xueying
    Lin, Jia
    Wang, Zhenxing
    NANO LETTERS, 2025, : 6125 - 6133
  • [25] First principles predictions of van der Waals bonded inorganic crystal structures: Test case, HgCl2
    Cooper, Valentino R.
    Donald, Kelling J.
    PROCEEDINGS OF THE 28TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP2015), 2015, 68 : 25 - 31
  • [26] Raman Tensor of van der Waals MoSe2
    Jin, Mingge
    Zheng, Wei
    Ding, Ying
    Zhu, Yanming
    Wang, Weiliang
    Huang, Feng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (11) : 4311 - 4316
  • [27] Interlayer excitons diffusion and transport in van der Waals heterostructures
    Chen, Yingying
    Lin, Qiubao
    Wang, Haizhen
    Li, Dehui
    MATERIALS FUTURES, 2025, 4 (01):
  • [28] Different Molecular Arrangement of Perylene in Metallic and Semiconducting Carbon Nanotubes: Impact of van der Waals Interaction
    Koyama, Takeshi
    Fujiki, Kazuma
    Nagasawa, Yuya
    Okada, Susumu
    Asaka, Koji
    Saito, Yahachi
    Kishida, Hideo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (10) : 5805 - 5812
  • [29] Artificial mechanoreceptor based on van der Waals stacking structure
    Lee, Ko-Chun
    Huang, Shun-Yong
    Tsai, Meng-Yu
    Yang, Shih-Hsien
    Lin, Che-Yi
    Li, Mengjiao
    Chang, Yuan-Ming
    Watanabe, Kenji
    Taniguchi, Takashi
    Lai, Ying-Chih
    Lin, Shu-Ping
    Chiu, Po-Wen
    Lin, Yen-Fu
    MATTER, 2021, 4 (05) : 1598 - 1610
  • [30] Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures
    Tao, Quanyang
    Wu, Ruixia
    Li, Qianyuan
    Kong, Lingan
    Chen, Yang
    Jiang, Jiayang
    Lu, Zheyi
    Li, Bailing
    Li, Wanying
    Li, Zhiwei
    Liu, Liting
    Duan, Xidong
    Liao, Lei
    Liu, Yuan
    NATURE COMMUNICATIONS, 2021, 12 (01)