Homogeneous principal bundles over the upper half-plane

被引:5
|
作者
Biswas, Indranil [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
D O I
10.1215/0023608X-2009-016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected complex reductive linear algebraic group, and let K subset of G be a maximal compact subgroup. The Lie algebra of K is denoted by P. A holomorphic Hermitian principal G-bundle is a pair of the form (E-G, E-K), where E-G is a holomorphic principal G-bundle and E-K subset of E-G is a C-infinity-reduction of structure group to K. Two holomorphic Hermitian principal G-bundles (E-G, E-K) and (E-G' E-K') are called holomorphically isometric if there is a holomorphic isomorphism of the principal G-bundle E-G with E'(G) which takes E-K to E-K'. We consider all holomorphic Hermitian principal G-bundles (E-G, E-K) over the upper half-plane H such that the pullback of (E-G, E-K) by. each holomorphic automorphism of H is holomorphically isometric to (E-G, E-K) itself. We prove that the isomorphism classes of such pairs are parameterized by the equivalence classes of pairs of the form (chi, A), where chi : R -> K is a homomorphism, and A is an element of t circle times(R) C such that [A, d chi(1)] = 2 root-/l.A. (Here d chi : R -> t is the homomorphism of Lie algebras associated to chi.) Two such pairs (chi, A) and (chi', A') are called equivalent if there is an element g(0) is an element of K such that chi' = Ad(g(0)) o chi and A' = Ad(g(0)) (A).
引用
收藏
页码:325 / 363
页数:39
相关论文
共 50 条
  • [21] On Weighted Solutions to (partial derivative)over-bar-Equation in the Upper Half-Plane
    Hayrapetyan, F., V
    Karapetyan, A. H.
    Karapetyan, A. A.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (05): : 270 - 279
  • [22] THE HEAT EQUATION ON THE FINITE POINCARE UPPER HALF-PLANE
    DeDeo, M.
    Velasquez, Elinor
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4171 - 4180
  • [23] BLOCH-TYPE SPACES ON THE UPPER HALF-PLANE
    Fu, Xi
    Zhang, Junding
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1337 - 1346
  • [24] EXTENDED AUTOMORPHIC-FORMS ON THE UPPER HALF-PLANE
    CASSELMAN, W
    MATHEMATISCHE ANNALEN, 1993, 296 (04) : 755 - 762
  • [25] INTEGRAL-REPRESENTATIONS IN GENERALIZED UPPER HALF-PLANE
    DZHRBASHIAN, MM
    KARAPETIAN, AO
    DOKLADY AKADEMII NAUK SSSR, 1990, 312 (02): : 270 - 273
  • [26] Composition operators on the Dirichlet space of the upper half-plane
    Sharma, Ajay K.
    Sharma, Mehak
    Raj, Kuldip
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 198 - 206
  • [27] Isometric embeddings of the spaces KΘ in the upper half-plane
    Baranov A.
    Journal of Mathematical Sciences, 2001, 105 (5) : 2319 - 2329
  • [28] Scattering in the Poincare disk and in the Poincare upper half-plane
    de Jesus, Anderson L.
    Maioli, Alan C.
    Schmidt, Alexandre G. M.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [29] Quadratic Vector Equations on Complex Upper Half-Plane
    Ajanki, Oskari Heikki
    Erdos, Laszlo
    Krueger, Torben
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 261 (1261) : 1 - +