Versatile nanodot-patterned Gore-Tex fabric for multiple energy harvesting in wearable and aerodynamic nanogenerators

被引:46
作者
Kim, Taewoo [1 ,2 ]
Jeon, Sangheon [3 ]
Lone, Saifullah [3 ]
Doh, Song Jun [5 ]
Shin, Dong-Myeong [4 ]
Kim, Hyung Kook [1 ,2 ]
Hwang, Yoon-Hwae [1 ,2 ]
Hong, Suck Won [3 ]
机构
[1] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 46241, South Korea
[2] Pusan Natl Univ, PLUS Nanoconvergence Technol Div BK21, Busan 46241, South Korea
[3] Pusan Natl Univ, Dept Opt & Mechatron Engn, Dept Cognomechatron Engn, Busan 46241, South Korea
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Korea Inst Ind Technol KITECH, Tech Text & Mat R&D Grp, Ansan 15588, South Korea
基金
新加坡国家研究基金会;
关键词
Nanogenerator; Mechanical energy; Harvest; Self-powered; Wearable; TEXTILE TRIBOELECTRIC NANOGENERATOR; WATER-WAVE ENERGY; OPTIMIZATION; ELECTRONICS; GENERATOR; DEVICES; STORAGE; DESIGN; SYSTEM; HEALTH;
D O I
10.1016/j.nanoen.2018.09.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ongoing expedition to harvest ambient renewable energies from the environment by wearable fabric-based nanogenerators is a promising route to sustainably drive the small electronics with unprecedented opportunities in next-generation self-powered devices. Here, we report a simple method to fabricate a washable, breathable and wearable triboelectric nanogenerator that harvests the energy of triboelectricity through an enhanced friction surface area made of the gold nanodot-pattern crafted by electron-beam sputtering on an inexpensive polyurethane surface. The gold deposition which crops-up as regular small islands, under oxygen plasma is subsequently, etched into nanodot-pattern on a polyurethane surface to convert mechanical energy into an electrical signal via in-plane sliding mode with a maximum output of similar to 2 mu W. The nanodot engineering plays an important role to improve the active sliding frictional area, as well as the corresponding output-performance of the triboelectric nanogenerator. To demonstrate the potential applications of our approach, we designed a self-powered wearable device integrated with clothes to harvest different kinds of mechanical energies from the human motion. To elevate the power output-performance, we fabricated waterproof fiber with flutter membrane and quantified triboelectric charge against airflow speed. At mild wind speed, the fabricated triboelectric nanogenerator shows a maximum output of 70 mu W. Besides, as an example of practical application, the nanogenerator constructed can produce an improved capacitor charge voltage to drive dozens of light-emitting diodes and apply them to low power consumption devices. This technology is produced in a simple and cost-effective manner and reports an easy way to produce an energy harvesting system based on triboelectric effects using a sustainable and renewable energy source of body motions and air flows. This system is expected to be one of the best green energy sources for portable and wearable electronic devices in the near future.
引用
收藏
页码:209 / 217
页数:9
相关论文
共 57 条
[1]   Flutter-driven triboelectrification for harvesting wind energy [J].
Bae, Jihyun ;
Lee, Jeongsu ;
Kim, SeongMin ;
Ha, Jaewook ;
Lee, Byoung-Sun ;
Park, YoungJun ;
Choong, Chweelin ;
Kim, Jin-Baek ;
Wang, Zhong Lin ;
Kim, Ho-Young ;
Park, Jong-Jin ;
Chung, U-In .
NATURE COMMUNICATIONS, 2014, 5
[2]   Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science [J].
Cao, Xia ;
Jie, Yang ;
Wang, Ning ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[3]  
Chen J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.138, 10.1038/nenergy.2016.138]
[4]   Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy [J].
Chen, Jun ;
Yang, Jin ;
Li, Zhaoling ;
Fan, Xing ;
Zi, Yunlong ;
Jing, Qingshen ;
Guo, Hengyu ;
Wen, Zhen ;
Pradel, Ken C. ;
Niu, Simiao ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (03) :3324-3331
[5]   Wearable Triboelectric Generator for Powering the Portable Electronic Devices [J].
Cui, Nuanyang ;
Liu, Jinmei ;
Gu, Long ;
Bai, Suo ;
Chen, Xiaobo ;
Qin, Yong .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (33) :18225-18230
[6]   Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm [J].
Dagdeviren, Canan ;
Yang, Byung Duk ;
Su, Yewang ;
Tran, Phat L. ;
Joe, Pauline ;
Anderson, Eric ;
Xia, Jing ;
Doraiswamy, Vijay ;
Dehdashti, Behrooz ;
Feng, Xue ;
Lu, Bingwei ;
Poston, Robert ;
Khalpey, Zain ;
Ghaffari, Roozbeh ;
Huang, Yonggang ;
Slepian, Marvin J. ;
Rogers, John A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (05) :1927-1932
[7]   Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics [J].
Fan, Feng Ru ;
Tang, Wei ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (22) :4283-4305
[8]   Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode [J].
Gu, Long ;
Cui, Nuanyang ;
Cheng, Li ;
Xu, Qi ;
Bai, Suo ;
Yuan, Miaomiao ;
Wu, Weiwei ;
Liu, Jinmei ;
Zhao, Yong ;
Ma, Fei ;
Qin, Yong ;
Wang, Zhong Lin .
NANO LETTERS, 2013, 13 (01) :91-94
[9]   A Triboelectric Generator Based on Checker-Like Interdigital Electrodes with a Sandwiched PET Thin Film for Harvesting Sliding Energy in All Directions [J].
Guo, Hengyu ;
Leng, Qiang ;
He, Xianming ;
Wang, Mingjun ;
Chen, Jie ;
Hu, Chenguo ;
Xi, Yi .
ADVANCED ENERGY MATERIALS, 2015, 5 (01)
[10]   A nanogenerator for harvesting airflow energy and light energy [J].
Guo, Hengyu ;
He, Xianming ;
Zhong, Junwen ;
Zhong, Qize ;
Leng, Qiang ;
Hu, Chenguo ;
Chen, Jie ;
Tian, Li ;
Xi, Yi ;
Zhou, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) :2079-2087