Fully metallic copper 3D-printed electrodes via sintering for electrocatalytic biosensing

被引:36
作者
Redondo, Edurne [1 ]
Pumera, Martin [1 ,2 ,3 ,4 ]
机构
[1] Brno Univ Technol, Cent European Inst Technol, Future Energy & Innovat Lab, Purkynova 123, Brno 61200, Czech Republic
[2] Mendel Univ Brno, Dept Food Technol, 3D Printing & Innovat Hub, Zemedelska 1, CZ-61300 Brno, Czech Republic
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, 91 Hsueh Shih Rd, Taichung, Taiwan
[4] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
关键词
3D printed electrodes; Copper electrodes; Sintering; Electroanalysis; Glucose sensing; GLUCOSE; COMPONENTS;
D O I
10.1016/j.apmt.2021.101253
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D printing is a very useful manufacturing method for the fabrication of electrochemical devices. Typically, accessible fused filament fabrication (FFF) is the most used method; but it is limited to the materials of use, mainly to carbon/polylactic acid blend. The use of metal 3D printed devices produced by FFF would offer very useful combination of advantages such as robustness, and electrocatalytic surfaces at a low cost. Here, 3D printed copper electrodes were successfully prepared by FFF followed by a sintering step. The physical and electrochemical properties of FFF 3D printed copper electrodes were characterised using various complementary techniques, while the electrochemical performance was evaluated for the non-enzymatic sensing of glucose as a first demonstration of applicability. Such low-cost 3D-printing method for fabrication of metallic electrodes will be further applicable for a wide variety of devices. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding [J].
Glick, Casey C. ;
Srimongkol, Mitchell T. ;
Schwartz, Aaron J. ;
Zhuang, William S. ;
Lin, Joseph C. ;
Warren, Roseanne H. ;
Tekell, Dennis R. ;
Satamalee, Panitan A. ;
Lin, Liwei .
MICROSYSTEMS & NANOENGINEERING, 2016, 2
[22]   Laser-induced cobalt oxide entrapment within 3D-printed carbon electrodes for amperometric sensing [J].
Silva, Luiz Ricardo G. ;
Rocha, Raquel G. ;
Rocha, Diego P. ;
Nossol, Edson ;
Janegitz, Bruno C. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. ;
Stefano, Jessica S. .
ELECTROCHIMICA ACTA, 2025, 514
[23]   3D-Printed Lithium-Ion Battery Electrodes: A Brief Review of Three Key Fabrication Techniques [J].
Pavlovskii, Alexander A. ;
Pushnitsa, Konstantin ;
Kosenko, Alexandra ;
Novikov, Pavel ;
Popovich, Anatoliy A. .
MATERIALS, 2024, 17 (23)
[24]   3D printed enzymatic microchip for multiplexed electrochemical biosensing [J].
Koukouviti, Eleni ;
Kokkinos, Christos .
ANALYTICA CHIMICA ACTA, 2021, 1186
[25]   Structure and Mechanical Properties of 3D-Printed Ceramic Specimens [J].
Promakhov, V. V. ;
Zhukov, A. S. ;
Vorozhtsov, A. B. ;
Schults, N. A. ;
Kovalchuk, S. V. ;
Kozhevnikov, S. V. ;
Olisov, A. V. ;
Klimenko, V. A. .
RUSSIAN PHYSICS JOURNAL, 2019, 62 (05) :876-881
[26]   3D-Printed Hydrogel-Filled Microneedle Arrays [J].
Barnum, Lindsay ;
Quint, Jacob ;
Derakhshandeh, Hossein ;
Samandari, Mohamadmahdi ;
Aghabaglou, Fariba ;
Farzin, Ali ;
Abbasi, Laleh ;
Bencherif, Sidi ;
Memic, Adnan ;
Mostafalu, Pooria ;
Tamayol, Ali .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (13)
[27]   Magnetic 3D-Printed Composites-Production and Applications [J].
Ehrmann, Guido ;
Blachowicz, Tomasz ;
Ehrmann, Andrea .
POLYMERS, 2022, 14 (18)
[28]   Custom-designed 3D-printed metallic fluid guiding elements for enhanced heat transfer at low pressure drop [J].
Hansjosten, Edgar ;
Wenka, Achim ;
Hensel, Andreas ;
Benzinger, Walther ;
Klumpp, Michael ;
Dittmeyer, Roland .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2018, 130 :119-126
[29]   Fabrication and optimisation of a fused filament 3D-printed microfluidic platform [J].
Tothill, A. M. ;
Partridge, M. ;
James, S. W. ;
Tatam, R. P. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (03)
[30]   A review on the surface modification of materials for 3D-printed diagnostic devices [J].
Deka, Mridupaban ;
Sinha, Nibedita ;
Das, Rajkamal ;
Hazarika, Nihal Kumar ;
Das, Hrishikesh ;
Daurai, Bethuel ;
Gogoi, Manashjit .
ANALYTICAL METHODS, 2024, 16 (04) :485-495