USE OF FOREST STRUCTURE TO IMPROVE CLASSIFICATION

被引:1
作者
Grandchamp, Enguerran [1 ]
机构
[1] UAG, LAMIA, St Claude, Guadeloupe, France
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
forest; classification; LiDAR; decision tree;
D O I
10.1109/IGARSS.2014.6946864
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with forest classification in tropical and subtropical areas using multi-sources data fusion. Topological, environmental, structural and visual information are used to classify the samples. This study improves a previous classification by introducing airborne LiDAR information through the computation of the Digital Vegetation Elevation Model (DVEM). This kind of information is the first structural characteristic of the forest computed over the whole territory at the meter scale. The classification is based on decision trees and allows a significant improvement of the previous classification especially over the transition areas which are reduced and more precisely localized.
引用
收藏
页码:2038 / 2041
页数:4
相关论文
共 13 条
[1]  
Chave J., 2005, OECOLOGIA
[2]  
Diedershagen O., 2004, INT ARCH PHOTOGRAM R
[3]  
Evans J.S., 2009, REMOTE SENSING ENV
[4]  
Falkowski M.J., 2008, REMOTE SENSING ENV
[5]  
Grandchamp E., GEOPROCESSING 2010
[6]  
Grandchamp E., CIARP 2012
[7]  
Grandchamp E., ICECS 2009
[8]  
Laws K.I., 1980, SPIE IM PROC MISS GU, V238
[9]  
Lesur D., 2011, RAPPORT ETUDE UTILIS
[10]   Texture features for browsing and retrieval of image data [J].
Manjunath, BS ;
Ma, WY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (08) :837-842