Semi-supervised fault classification based on dynamic Sparse Stacked auto-encoders model

被引:107
作者
Jiang, Li [1 ]
Ge, Zhiqiang [1 ]
Song, Zhihuan [1 ]
机构
[1] Zhejiang Univ, Dept Control Sci & Engn, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault classification; Stacked auto-encoders; Deep learning; Semi-supervised learning; Dynamic process; FISHER DISCRIMINANT-ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; PARTIAL LEAST-SQUARES; DIAGNOSIS;
D O I
10.1016/j.chemolab.2017.06.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a hierarchical sparse artificial neural network for classifying the faults in dynamic processes base on limited labeled data. The Stacked auto-encoders (SAE) is developed to extract features from different faults. Each neural network in the proposed SAE is given a sparse constraint to learn a Sparse Stacked auto encoders (SSAE). Then, the Dynamic time window is combined into SSAE to build Dynamic Sparse Stacked auto-encoders (DSSAE). DSSAE model based semi-supervised fault classification scheme is then formulated to classify the dynamic faulty data. Simulation studies on the Tennessee-Eastman (TE) benchmark process evaluate the performance of the developed method, which indicate that the DSSAE method performs better than both SAE and SSAE.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 23 条
[1]  
Bagheri B, 2010, 19 INT C ELECT MACHI, P1
[2]  
Baughman D Richard, 2014, NEURAL NETWORKS BIOP
[3]  
Bengio Yoshua, 2013, Statistical Language and Speech Processing. First International Conference, SLSP 2013. Proceedings: LNCS 7978, P1, DOI 10.1007/978-3-642-39593-2_1
[4]  
Braatz R.D, 2005, FAULT DETECTION DIAG
[5]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[6]   Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J].
Chiang, LH ;
Russell, EL ;
Braatz, RD .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (02) :243-252
[7]   Fault diagnosis based on Fisher discriminant analysis and support vector machines [J].
Chiang, LH ;
Kotanchek, ME ;
Kordon, AK .
COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) :1389-1401
[8]   Sparse Autoencoder-based Feature Transfer Learning for Speech Emotion Recognition [J].
Deng, Jun ;
Zhang, Zixing ;
Marchi, Erik ;
Schuller, Bjoern .
2013 HUMAINE ASSOCIATION CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2013, :511-516
[9]   Review of Recent Research on Data-Based Process Monitoring [J].
Ge, Zhiqiang ;
Song, Zhihuan ;
Gao, Furong .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (10) :3543-3562
[10]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507