Correlation functions in the Schwarzian theory

被引:10
|
作者
Belokurov, Vladimir V. [1 ,2 ]
Shavgulidze, Evgeniy T. [1 ]
机构
[1] Lomonosov Moscow State Univ, Leninskie Gory 1, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary Prospect 7a, Moscow 117312, Russia
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 11期
关键词
Field Theories in Lower Dimensions; AdS-CFT Correspondence; Integrable Field Theories;
D O I
10.1007/JHEP11(2018)036
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A regular approach to evaluate the functional integrals over the quasi-invariant measure on the group of diffeomorphisms is presented. As an important example of the application of this technique, we explicitly evaluate the correlation functions in the Schwarzian theory.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Correlation functions in the Schwarzian theory
    Vladimir V. Belokurov
    Evgeniy T. Shavgulidze
    Journal of High Energy Physics, 2018
  • [2] The Schwarzian theory — origins
    Thomas G. Mertens
    Journal of High Energy Physics, 2018
  • [3] The Schwarzian theory - origins
    Mertens, Thomas G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [4] Quantum correction to chaos in Schwarzian theory
    Yong-Hui Qi
    Sang-Jin Sin
    Junggi Yoon
    Journal of High Energy Physics, 2019
  • [5] Quantum correction to chaos in Schwarzian theory
    Qi, Yong-Hui
    Sin, Sang-Jin
    Yoon, Junggi
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [6] Warped Schwarzian theory
    Afshar, Hamid R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [7] Warped Schwarzian theory
    Hamid R. Afshar
    Journal of High Energy Physics, 2020
  • [8] Exact correlation functions in conformal fishnet theory
    Gromov, Nikolay
    Kazakov, Vladimir
    Korchemsky, Gregory
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [9] Exact correlation functions in conformal fishnet theory
    Nikolay Gromov
    Vladimir Kazakov
    Gregory Korchemsky
    Journal of High Energy Physics, 2019
  • [10] Fermionic localization of the schwarzian theory
    Douglas Stanford
    Edward Witten
    Journal of High Energy Physics, 2017