ALGORITHMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS APPROACH TO MINIMIZATION PROBLEMS

被引:3
作者
Yao, Yonghong [2 ]
Liou, Y. C. [3 ]
Wong, M. M. [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Chungli 32023, Taiwan
[2] Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China
[3] Cheng Shiu Univ, Dept Informat Management, Kaohsiung 833, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 05期
关键词
Nonexpansive mapping; Fixed point; Inverse-strongly monotone mapping; Equilibrium problem; Minimum norm; STRONG-CONVERGENCE THEOREM; STEEPEST-DESCENT METHODS; NONEXPANSIVE-MAPPINGS; EXTRAGRADIENT METHOD; VISCOSITY APPROXIMATION; ITERATIVE SCHEME;
D O I
10.11650/twjm/1500406033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce two algorithms for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Furthermore, we prove that the proposed algorithms converge strongly to a solution of the minimization problem of finding x* is an element of Gamma such that parallel to x*parallel to = min(x is an element of Gamma) parallel to x parallel to where Gamma stands for the intersection set of the solution set of the equilibrium problem and the fixed points set of a nonexpansive mapping.
引用
收藏
页码:2073 / 2089
页数:17
相关论文
共 29 条
[1]  
Blum E., 1994, Math. Stud., V63, P127
[2]   Implicit Iteration Scheme with Perturbed Mapping for Equilibrium Problems and Fixed Point Problems of Finitely Many Nonexpansive Mappings [J].
Ceng, L. C. ;
Schaible, S. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (02) :403-418
[3]   An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings [J].
Ceng, L. -C. ;
Al-Homidan, S. ;
Ansari, Q. H. ;
Yao, J. -C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) :967-974
[4]  
CENG LC, 2009, J OPTIMIZAT IN PRESS
[5]   Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities [J].
Ceng, Lu-Chuan ;
Wang, Chang-yu ;
Yao, Jen-Chih .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 67 (03) :375-390
[6]   A hybrid iterative scheme for mixed equilibrium problems and fixed point problems [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) :186-201
[7]   Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :729-741
[8]   ON AN IMPLICIT HIERARCHICAL FIXED POINT APPROACH TO VARIATIONAL INEQUALITIES [J].
Cianciaruso, Filomena ;
Colao, Vittorio ;
Muglia, Luigi ;
Xu, Hong-Kun .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (01) :117-124
[9]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[10]  
Moudafi A, 1999, LECT NOTES ECON MATH, V477, P187