Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution

被引:1560
作者
Sun, Hongming [1 ]
Yan, Zhenhua [1 ]
Liu, Fangming [1 ]
Xu, Wence [1 ]
Cheng, Fangyi [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Key Lab Adv Energy Mat Chem, Renewable Energy Convers & Storage Ctr, Minist Educ,Coll Chem, Tianjin 300071, Peoples R China
关键词
electrocatalysis; hydrogen evolution; oxygen evolution; self-supported electrodes; transition metals; DOUBLE HYDROXIDE NANOSHEETS; PT-LIKE ACTIVITY; BIFUNCTIONAL ELECTROCATALYST; NANOWIRE ARRAYS; NICKEL FOAM; REDUCTION/EVOLUTION REACTION; CATALYTIC-ACTIVITY; MOS2; NANOSHEETS; CARBON CLOTH; EFFICIENT;
D O I
10.1002/adma.201806326
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical water splitting is a promising technology for sustainable conversion, storage, and transport of hydrogen energy. Searching for earth-abundant hydrogen/oxygen evolution reaction (HER/OER) electrocatalysts with high activity and durability to replace noble-metal-based catalysts plays paramount importance in the scalable application of water electrolysis. A freestanding electrode architecture is highly attractive as compared to the conventional coated powdery form because of enhanced kinetics and stability. Herein, recent progress in developing transition-metal-based HER/OER electrocatalytic materials is reviewed with selected examples of chalcogenides, phosphides, carbides, nitrides, alloys, phosphates, oxides, hydroxides, and oxyhydroxides. Focusing on self-supported electrodes, the latest advances in their structural design, controllable synthesis, mechanistic understanding, and strategies for performance enhancement are presented. Remaining challenges and future perspectives for the further development of self-supported electrocatalysts are also discussed.
引用
收藏
页数:18
相关论文
共 116 条
[11]   Directional Construction of Vertical Nitrogen-Doped 1T-2H MoSe2/Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction [J].
Deng, Shengjue ;
Zhong, Yu ;
Zeng, Yinxiang ;
Wang, Yadong ;
Yao, Zhujun ;
Yang, Fan ;
Lin, Shiwei ;
Wang, Xiuli ;
Lu, Xihong ;
Xia, Xinhui ;
Tu, Jiangping .
ADVANCED MATERIALS, 2017, 29 (21)
[12]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[13]   Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn2O4 Nanodots Supported on Graphene [J].
Du, Jing ;
Chen, Chengcheng ;
Cheng, Fangyi ;
Chen, Jun .
INORGANIC CHEMISTRY, 2015, 54 (11) :5467-5474
[14]   3D WS2 Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes [J].
Duan, Jingjing ;
Chen, Sheng ;
Chambers, Benjamin A. ;
Andersson, Gunther G. ;
Qiao, Shi Zhang .
ADVANCED MATERIALS, 2015, 27 (28) :4234-4241
[15]   Electrocatalysts for hydrogen evolution reaction [J].
Eftekhari, Ali .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (16) :11053-11077
[16]   Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics [J].
Eftelthari, Ali .
APPLIED MATERIALS TODAY, 2017, 8 :1-17
[17]   High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures [J].
Faber, Matthew S. ;
Dziedzic, Rafal ;
Lukowski, Mark A. ;
Kaiser, Nicholas S. ;
Ding, Qi ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (28) :10053-10061
[18]   Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction [J].
Fan, Meihong ;
Chen, Hui ;
Wu, Yuanyuan ;
Feng, Liang-Liang ;
Liu, Yipu ;
Li, Guo-Dong ;
Zou, Xiaoxin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) :16320-16326
[19]   Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction [J].
Feng, Jin-Xian ;
Ye, Sheng-Hua ;
Xu, Han ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
ADVANCED MATERIALS, 2016, 28 (23) :4698-4703
[20]   FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction [J].
Feng, Jin-Xian ;
Xu, Han ;
Dong, Yu-Tao ;
Ye, Sheng-Hua ;
Tong, Ye-Xiang ;
Li, Gao-Ren .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (11) :3694-3698