Improving the reliability of photometric redshift with machine learning

被引:18
作者
Razim, Oleksandra [1 ]
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [2 ]
Riccio, Giuseppe [2 ]
Salvato, Mara [3 ]
Longo, Giuseppe [1 ]
机构
[1] Univ Federico II, Dept Phys, Str Vicinale Cupa Cintia 21, I-80126 Naples, Italy
[2] INAF, Astron Observ Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy
[3] MPI Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany
关键词
methods: data analysis; techniques: spectroscopic; surveys; galaxies: distances and redshifts; catalogues; SELF-ORGANIZING MAPS; GALAXIES; COSMOS; DISTRIBUTIONS; PERFORMANCE; EVOLUTION; SPECTRA; CATALOG; LSST; PDFS;
D O I
10.1093/mnras/stab2334
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to answer the open questions of modern cosmology and galaxy evolution theory, robust algorithms for calculating photometric redshifts (photo-z) for very large samples of galaxies are needed. Correct estimation of the various photo-z algorithms' performance requires attention to both the performance metrics and the data used for the estimation. In this work, we use the supervised machine learning algorithm MLPQNA (Multi-Layer Perceptron with Quasi-Newton Algorithm) to calculate photometric redshifts for the galaxies in the COSMOS2015 catalogue and the unsupervised Self-Organizing Maps (SOM) to determine the reliability of the resulting estimates. We find that for z(spec) < 1.2, MLPQNA photo-z predictions are on the same level of quality as spectral energy distribution fitting photo-z. We show that the SOM successfully detects unreliable z(spec) that cause biases in the estimation of the photo-z algorithms' performance. Additionally, we use SOM to select the objects with reliable photo-z predictions. Our cleaning procedures allow us to extract the subset of objects for which the quality of the final photo-z catalogues is improved by a factor of 2, compared to the overall statistics.
引用
收藏
页码:5034 / 5052
页数:19
相关论文
共 71 条
  • [1] Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North
    Arnouts, S
    Cristiani, S
    Moscardini, L
    Matarrese, S
    Lucchin, F
    Fontana, A
    Giallongo, E
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) : 540 - 556
  • [2] LUMINOSITY INDICATORS IN SPECTRA OF QUASI-STELLAR OBJECTS
    BALDWIN, JA
    [J]. ASTROPHYSICAL JOURNAL, 1977, 214 (03) : 679 - 684
  • [3] Robust machine learning applied to astronomical data sets.: III.: Probabilistic photometric redshifts for galaxies and quasars in the SDSS and GALEX
    Ball, Nicholas M.
    Brunner, Robert J.
    Myers, Adam D.
    Strand, Natalie E.
    Alberts, Stacey L.
    Tcheng, David
    [J]. ASTROPHYSICAL JOURNAL, 2008, 683 (01) : 12 - 21
  • [4] Baron D., 2019, Machine Learning in Astronomy: A Practical Overview
  • [5] Baum W. A., 1962, IAU S, V15, P390
  • [6] PHOTOELECTRIC DETERMINATIONS OF REDSHIFTS BEYOND 0.2 C
    BAUM, WA
    [J]. ASTRONOMICAL JOURNAL, 1957, 62 (01) : 6 - 7
  • [7] Photometric redshifts for the SDSS Data Release 12
    Beck, Robert
    Dobos, Laszlo
    Budavari, Tamas
    Szalay, Alexander S.
    Csabai, Istvan
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) : 1371 - 1381
  • [8] Besitez N., 2000, APJ, V536, P571
  • [9] Photometric redshifts for the Kilo-Degree Survey Machine-learning analysis with artificial neural networks
    Bilicki, M.
    Hoekstra, H.
    Brown, M. J. I.
    Amaro, V.
    Blake, C.
    Cavuoti, S.
    de Jong, J. T. A.
    Georgiou, C.
    Hildebrandt, H.
    Wolf, C.
    Amon, A.
    Brescia, M.
    Brough, S.
    Costa-Duarte, M. V.
    Erben, T.
    Glazebrook, K.
    Grado, A.
    Heymans, C.
    Jarrett, T.
    Joudaki, S.
    Kuijken, K.
    Longo, G.
    Napolitano, N.
    Parkinson, D.
    Vellucci, C.
    Kleijn, G. A. Verdoes
    Wang, L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [10] CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z=0.44 galaxy cluster MACS J1206.2-0847
    Biviano, A.
    Rosati, P.
    Balestra, I.
    Mercurio, A.
    Girardi, M.
    Nonino, M.
    Grillo, C.
    Scodeggio, M.
    Lemze, D.
    Kelson, D.
    Umetsu, K.
    Postman, M.
    Zitrin, A.
    Czoske, O.
    Ettori, S.
    Fritz, A.
    Lombardi, M.
    Maier, C.
    Medezinski, E.
    Mei, S.
    Presotto, V.
    Strazzullo, V.
    Tozzi, P.
    Ziegler, B.
    Annunziatella, M.
    Bartelmann, M.
    Benitez, N.
    Bradley, L.
    Brescia, M.
    Broadhurst, T.
    Coe, D.
    Demarco, R.
    Donahue, M.
    Ford, H.
    Gobat, R.
    Graves, G.
    Koekemoer, A.
    Kuchner, U.
    Melchior, P.
    Meneghetti, M.
    Merten, J.
    Moustakas, L.
    Munari, E.
    Regos, E.
    Sartoris, B.
    Seitz, S.
    Zheng, W.
    [J]. ASTRONOMY & ASTROPHYSICS, 2013, 558