Helmholtz free energy equation of state for propane and R134a binary mixture

被引:8
作者
Zhang, Haiyang [1 ]
Gao, Bo [1 ]
Wu, Wei [2 ]
Li, Huiya [1 ]
Zhong, Quan [1 ,3 ]
Chen, YanYan [1 ]
Liu, Wenjing [1 ]
Song, Yaonan [1 ]
Zhao, Yanxing [1 ]
Dong, Xueqiang [1 ]
Gong, Maoqiong [1 ,3 ]
Luo, Ercang [1 ]
Hu, Jianying [1 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[2] Tsinghua Univ, Sch Architecture, Dept Bldg Sci, Beijing 100084, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
Helmholtz free energy; Equation of state; Binary mixture; R290; R134a; Refrigerant; MODEL PREDICTIVE 1978; PENG-ROBINSON EOS; 1,1,1,2-TETRAFLUOROETHANE PLUS PROPANE; PRESSURE PHASE-EQUILIBRIA; ISOTHERMAL FLASH PROBLEM; VAPOR-LIQUID-EQUILIBRIA; SULFHYDRYL-GROUP SH; PPR78; MODEL; THERMODYNAMIC PROPERTIES; INTERACTION PARAMETERS;
D O I
10.1016/j.ijrefrig.2018.03.016
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, a Helmholtz free energy equation of state for R290 + R134a based on the multi-fluid approximations model was developed to describe the thermophysical properties of the binary mixture. The present equation shows more competitive than the default equation in REFPROP 9.1 (Lemmon et al., 2013). It covers a temperature range of (252-400) K and pressures up to 6.1 MPa. The estimated standard uncertainties of the present equation are 0.70% and 0.90% for the bubble point and dew point pressures, 0.26 K and 0.29 K for the bubble point and dew point temperatures, 0.13% and 0.60% for the saturated liquid and vapor densities, respectively. The main purpose is to provide a useful model for R290 + R134a, and thus to promote its better applications for the design and optimization of the refrigeration systems. (C) 2018 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 60 条
[11]  
Calm J.M., 2007, HPAC Eng (Heat Pip Air Cond), P50
[12]   Experimental measurement of vapor pressures and (vapor plus liquid) equilibrium for {1,1,1,2-tetrafluoroethane (R134a) + propane (R290)} by a recirculation apparatus with view windows [J].
Dong, Xueqiang ;
Gong, Maoqiong ;
Liu, Junsheng ;
Wu, Jianfeng .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (03) :505-510
[13]  
Escobar Juan, 2006, C.T.F Cienc. Tecnol. Futuro, V3, P83
[14]   Calculation of phase equilibria for multi-component mixtures using highly accurate Helmholtz energy equations of state [J].
Gernert, Johannes ;
Jaeger, Andreas ;
Span, Roland .
FLUID PHASE EQUILIBRIA, 2014, 375 :209-218
[15]  
Hogben L., 2006, Handbook of linear algebra
[16]   Reliability of the correlation allowing the kij to switch from an alpha function to another one in hydrogen-containing systems [J].
Jaubert, Jean-Noel ;
Qian, Junwei ;
Privat, Romain ;
Leibovici, Claude F. .
FLUID PHASE EQUILIBRIA, 2013, 338 :23-29
[17]   Predicting the Phase Equilibria of Synthetic Petroleum Fluids with the PPR78 Approach [J].
Jaubert, Jean-Noel ;
Privat, Romain ;
Mutelet, Fabrice .
AICHE JOURNAL, 2010, 56 (12) :3225-3235
[18]   Extension of the PPR78 model (predictive 1978, Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing aromatic compounds [J].
Jaubert, JN ;
Vitu, S ;
Mutelet, F ;
Corriou, JP .
FLUID PHASE EQUILIBRIA, 2005, 237 (1-2) :193-211
[19]   VLE predictions with the Peng-Robinson equation of state and temperature dependent kij calculated through a group contribution method [J].
Jaubert, JN ;
Mutelet, F .
FLUID PHASE EQUILIBRIA, 2004, 224 (02) :285-304
[20]   Fast and robust algorithm for calculation of two-phase equilibria at given volume, temperature, and moles [J].
Jindrova, Tereza ;
Mikyska, Jiri .
FLUID PHASE EQUILIBRIA, 2013, 353 :101-114