UAV-Aided Weather Radar Calibration

被引:30
作者
Yin, Jiapeng [1 ,2 ]
Hoogeboom, Peter [2 ]
Unal, Christine [2 ]
Russchenberg, Herman [2 ]
van der Zwan, Fred [2 ]
Oudejans, Erik [2 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci, Changsha 410073, Peoples R China
[2] Delft Univ Technol, Dept Geosci & Remote Sensing, NL-2628 CN Delft, Netherlands
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 12期
关键词
Antenna pattern retrieval; antenna pointing calibration; unmanned aerial vehicle (UAV)-aided radar calibration; weather radar;
D O I
10.1109/TGRS.2019.2933912
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Weather radar is well recognized as an effective sensor for obtaining the microphysical and dynamical properties of precipitation at high spatial and temporal resolution. Radar calibration is one of the most important prerequisites for achieving accurate observations. In this article, a portable, cost-effective and repeatable radar calibration technique, namely, unmanned aerial vehicle (UAV)-aided radar calibration, is proposed. A UAV serves as the stable aerial platform carrying a metal sphere, flying over the radar illumination areas to complete the calibration process. The flying routine of the UAV can be pre-programmed, and thus, the antenna pattern regarding different elevation and azimuth angles can be retrieved. To obtain the position of the sphere, the real-time single-frequency precise point positioning-type global navigation satellite system solution is developed. In addition, the radar constant is calculated in the range-Doppler domain, and only the data where the metal sphere separates from clutter and other objects are selected. The S-band polarimetric Doppler transportable atmospheric radar (TARA) is used in the calibration campaign. The experiments demonstrate the following results: 1) antenna pointing calibration can be completed and 2) antenna pattern can be retrieved and weather radar constant can be accurately calculated.
引用
收藏
页码:10362 / 10375
页数:14
相关论文
共 16 条
[1]  
Anagnostou EN, 2001, J ATMOS OCEAN TECH, V18, P616, DOI 10.1175/1520-0426(2001)018<0616:TUOTPR>2.0.CO
[2]  
2
[3]  
[Anonymous], 2004, Polarimetric Doppler Weather Radar: Principles and Applications
[4]  
Aubry P., 1999, TARA REFLECTOR RAD P
[5]  
Bhargava N., 2013, P 3 AO4ELT C, P1
[6]   Real-time multi-GNSS single-frequency precise point positioning [J].
de Bakker, Peter F. ;
Tiberius, Christian C. J. M. .
GPS SOLUTIONS, 2017, 21 (04) :1791-1803
[7]  
Duthoit S, 2017, IEEE RAD CONF, P669, DOI 10.1109/RADAR.2017.7944287
[8]   SAR CALIBRATION - AN OVERVIEW [J].
FREEMAN, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (06) :1107-1121
[9]   SIRTA, a ground-based atmospheric observatory for cloud and aerosolresearch [J].
Haeffelin, M ;
Barthès, L ;
Bock, O ;
Boitel, C ;
Bony, S ;
Bouniol, D ;
Chepfer, H ;
Chiriaco, M ;
Cuesta, J ;
Delanoë, J ;
Drobinski, P ;
Dufresne, JL ;
Flamant, C ;
Grall, M ;
Hodzic, A ;
Hourdin, F ;
Lapouge, R ;
Lemaître, Y ;
Mathieu, A ;
Morille, Y ;
Naud, C ;
Noël, V ;
O'Hirok, W ;
Pelon, J ;
Pietras, C ;
Protat, A ;
Romand, B ;
Scialom, G ;
Vautard, R .
ANNALES GEOPHYSICAE, 2005, 23 (02) :253-275
[10]  
Kent B. M., 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), P412, DOI 10.1109/APS.2001.959486