Convergence analysis of a conforming adaptive finite element method for an obstacle problem

被引:73
作者
Braess, Dietrich [1 ]
Carstensen, Carsten
Hoppe, Ronald H. W.
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[3] Univ Houston, Dept Math, Houston, TX 77204 USA
[4] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
基金
美国国家科学基金会;
关键词
POSTERIORI ERROR ESTIMATORS; AVERAGING TECHNIQUES; VARIATIONAL-INEQUALITIES; EFFICIENT;
D O I
10.1007/s00211-007-0098-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The adaptive algorithm for the obstacle problem presented in this paper relies on the jump residual contributions of a standard explicit residual-based a posteriori error estimator. Each cycle of the adaptive loop consists of the steps 'SOLVE', 'ESTIMATE', 'MARK', and 'REFINE'. The techniques from the unrestricted variational problem are modified for the convergence analysis to overcome the lack of Galerkin orthogonality. We establish R-linear convergence of the part of the energy above its minimal value, if there is appropriate control of the data oscillations. Surprisingly, the adaptive mesh-refinement algorithm is the same as in the unconstrained case of a linear PDE-in fact, there is no modification near the discrete free boundary necessary for R-linear convergence. The arguments are presented for a model obstacle problem with an affine obstacle chi and homogeneous Dirichlet boundary conditions. The proof of the discrete local efficiency is more involved than in the unconstrained case. Numerical results are given to illustrate the performance of the error estimator.
引用
收藏
页码:455 / 471
页数:17
相关论文
共 34 条
[1]  
AINSWORTH M, 1993, METHODS PARTIAL DIFF, V9, P23
[2]  
[Anonymous], POSTERIORI ERROR EST
[3]  
[Anonymous], FINITE ELEMENT METHO
[4]  
[Anonymous], 1981, Numerical analysis of Variational Inequalities
[5]  
Bangerth W, 2003, LECT MATH
[6]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[7]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[8]   A posteriori error estimators for obstacle problems - another look [J].
Braess, D .
NUMERISCHE MATHEMATIK, 2005, 101 (03) :415-421
[9]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587
[10]  
Carstensen C, 2006, NUMER MATH, V103, P251, DOI [10.1007/s00211-005-0658-6, 10.1007/S00211-005-0658-6]