Near-invariant subspaces for matrix groups are nearly invariant

被引:0
作者
Mastnak, Mitja [1 ]
Omladic, Matjaz [2 ,3 ]
Radjavi, Heydar [4 ]
机构
[1] St Marys Univ, Dept Math, Halifax, NS B3H 3C3, Canada
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Jozef Stefan Inst, Ljubljana, Slovenia
[4] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Group; Semigroup; Reducibility; Invariant subspaces;
D O I
10.1016/j.laa.2016.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a semigroup of invertible matrices. It is shown that if P is an idempotent matrix of rank and co-rank at least two such that the rank of (1 - P)SP is never more than one for S in S (the range of the kind of P is said to be near-invariant), then S has an invariant subspace within one dimension of the range of P (the kind of range is said to be nearly invariant). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
[21]   Infinite dimensional linear groups with a large family of G-invariant subspaces [J].
Kurdachenko, L. A. ;
Sadovnichenko, A. V. ;
Subbotin, I. Ya. .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (04) :551-558
[22]   Subspaces of C∞ invariant under the differentiation [J].
Aleman, Alexandru ;
Baranov, Anton ;
Belov, Yurii .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (08) :2421-2439
[23]   Invariant subspaces for polynomially hyponormal operators [J].
Prunaru, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) :1689-1691
[24]   NUMERICAL CONSIDERATIONS IN COMPUTING INVARIANT SUBSPACES [J].
DONGARRA, JJ ;
HAMMARLING, S ;
WILKINSON, JH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) :145-161
[25]   Spectral Continuity Relative to Invariant Subspaces [J].
Salvador Sánchez-Perales ;
Slaviša V. Djordjević .
Complex Analysis and Operator Theory, 2017, 11 :927-941
[26]   The Proper Elements and Simple Invariant Subspaces [J].
Djordjevic, Slavisa V. .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2012, 3 (01) :17-23
[27]   A REMARK ON INVARIANT SUBSPACES OF POSITIVE OPERATORS [J].
Troitsky, Vladimir G. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) :4345-4348
[28]   Invariant subspaces for LPV systems and their applications [J].
Balas, G ;
Bokor, J ;
Szabó, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (11) :2065-2069
[29]   Perturbations of invariant subspaces of compact Operators [J].
Gil M. .
Acta Scientiarum Mathematicarum, 2016, 82 (1-2) :271-279
[30]   Invariant subspaces for polynomially bounded operators [J].
Ambrozie, C ;
Müller, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (02) :321-345