Near-invariant subspaces for matrix groups are nearly invariant

被引:0
作者
Mastnak, Mitja [1 ]
Omladic, Matjaz [2 ,3 ]
Radjavi, Heydar [4 ]
机构
[1] St Marys Univ, Dept Math, Halifax, NS B3H 3C3, Canada
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Jozef Stefan Inst, Ljubljana, Slovenia
[4] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Group; Semigroup; Reducibility; Invariant subspaces;
D O I
10.1016/j.laa.2016.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a semigroup of invertible matrices. It is shown that if P is an idempotent matrix of rank and co-rank at least two such that the rank of (1 - P)SP is never more than one for S in S (the range of the kind of P is said to be near-invariant), then S has an invariant subspace within one dimension of the range of P (the kind of range is said to be nearly invariant). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [21] Infinite dimensional linear groups with a large family of G-invariant subspaces
    Kurdachenko, L. A.
    Sadovnichenko, A. V.
    Subbotin, I. Ya.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (04): : 551 - 558
  • [22] Subspaces of C∞ invariant under the differentiation
    Aleman, Alexandru
    Baranov, Anton
    Belov, Yurii
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (08) : 2421 - 2439
  • [23] Invariant subspaces for polynomially hyponormal operators
    Prunaru, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1689 - 1691
  • [24] NUMERICAL CONSIDERATIONS IN COMPUTING INVARIANT SUBSPACES
    DONGARRA, JJ
    HAMMARLING, S
    WILKINSON, JH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 145 - 161
  • [25] Spectral Continuity Relative to Invariant Subspaces
    Salvador Sánchez-Perales
    Slaviša V. Djordjević
    Complex Analysis and Operator Theory, 2017, 11 : 927 - 941
  • [26] The Proper Elements and Simple Invariant Subspaces
    Djordjevic, Slavisa V.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2012, 3 (01): : 17 - 23
  • [27] A REMARK ON INVARIANT SUBSPACES OF POSITIVE OPERATORS
    Troitsky, Vladimir G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4345 - 4348
  • [28] Invariant subspaces for LPV systems and their applications
    Balas, G
    Bokor, J
    Szabó, Z
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (11) : 2065 - 2069
  • [29] Perturbations of invariant subspaces of compact Operators
    Gil M.
    Acta Scientiarum Mathematicarum, 2016, 82 (1-2): : 271 - 279
  • [30] Invariant subspaces for polynomially bounded operators
    Ambrozie, C
    Müller, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (02) : 321 - 345