Near-invariant subspaces for matrix groups are nearly invariant

被引:0
|
作者
Mastnak, Mitja [1 ]
Omladic, Matjaz [2 ,3 ]
Radjavi, Heydar [4 ]
机构
[1] St Marys Univ, Dept Math, Halifax, NS B3H 3C3, Canada
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Jozef Stefan Inst, Ljubljana, Slovenia
[4] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Group; Semigroup; Reducibility; Invariant subspaces;
D O I
10.1016/j.laa.2016.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a semigroup of invertible matrices. It is shown that if P is an idempotent matrix of rank and co-rank at least two such that the rank of (1 - P)SP is never more than one for S in S (the range of the kind of P is said to be near-invariant), then S has an invariant subspace within one dimension of the range of P (the kind of range is said to be nearly invariant). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [1] Nearly invariant subspaces for shift semigroups
    Yuxia Liang
    Jonathan R. Partington
    Science China Mathematics, 2022, 65 : 1895 - 1908
  • [2] Cyclic nearly invariant subspaces for semigroups of isometries
    Liang, Yuxia
    Partington, Jonathan R.
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [3] The matrix sign function method and the computation of invariant subspaces
    Byers, R
    He, CY
    Mehrmann, V
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (03) : 615 - 632
  • [4] Quasiaffinity and invariant subspaces
    A. Mello
    C. S. Kubrusly
    Archiv der Mathematik, 2016, 107 : 173 - 184
  • [5] Quasiaffinity and invariant subspaces
    Mello, A.
    Kubrusly, C. S.
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 173 - 184
  • [6] INVARIANT NEUTRAL SUBSPACES FOR SYMMETRICAL AND SKEW REAL MATRIX PAIRS
    LANCASTER, P
    RODMAN, L
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (03): : 602 - 618
  • [7] Convergence of restarted Krylov subspaces to invariant subspaces
    Beattie, C
    Embree, M
    Rossi, J
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (04) : 1074 - 1109
  • [8] Approximation by group invariant subspaces
    Barbieri, Davide
    Cabrelli, Carlos
    Hernandez, Eugenio
    Molter, Ursula
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 76 - 100
  • [9] CHARACTERIZATION OF INVARIANT SUBSPACES IN THE POLYDISC
    Maji, Amit
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    Sankar, T. R.
    JOURNAL OF OPERATOR THEORY, 2019, 82 (02) : 445 - 468
  • [10] Polycyclic codes as invariant subspaces
    Shi, Minjia
    Li, Xiaoxiao
    Sepasdar, Zahra
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68