The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems

被引:2
作者
Izydorek, Marek [1 ]
Janczewska, Joanna [1 ]
Waterstraat, Nils [2 ]
机构
[1] Gdansk Univ Technol, Inst Appl Math, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland
[2] Martin Luther Univ Halle Wittenberg, Inst Math, Nat Wissensch Fak 2, D-06099 Halle, Saale, Germany
关键词
Spectral Flow; bifurcation; Hamiltonian systems; CRITICAL-POINTS; FUNCTIONALS; UNIQUENESS; INVARIANT; METRICS; THEOREM; ORBITS; SPACES; INDEX;
D O I
10.1016/j.na.2021.112475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This G-equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the G-equivariant spectral flow to study bifurcation of periodic solutions for autonomous Hamiltonian systems with symmetries. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:17
相关论文
共 31 条