Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes

被引:11
作者
Albanese, A. A. [2 ]
Jornet, D. [1 ]
Oliaro, A. [3 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada IUMPA UPV, E-46022 Valencia, Spain
[2] Univ Salento, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[3] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
关键词
Non-quasianalytic weight function; pseudodifferential operators; linear partial differential operators; wave front set; propagation of singularities; MSC (2010) Primary: 46F05; 35A18; 35A21; ULTRADIFFERENTIABLE FUNCTIONS; CONVOLUTION-OPERATORS; BEURLING TYPE;
D O I
10.1002/mana.201010039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following inclusion WF*(u) subset of WF*(Pu) boolean OR Sigma, u is an element of epsilon(*)' (Omega), where WF* denotes the non-quasianalytic Beurling or Roumieu wave front set, Omega is an open subset of R-n, P is a linear partial differential operator with suitable ultradifferentiable coefficients, and S is the characteristic set of P. The proof relies on some techniques developed in the study of pseudodifferential operators in the Beurling setting. Some applications are also investigated. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:411 / 425
页数:15
相关论文
共 23 条
[1]   Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators [J].
Albanese, A. A. ;
Jornet, D. ;
Oliaro, A. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (02) :153-181
[2]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[3]  
Beurling A., 1961, LECT 4 5 AMS SUMM I
[4]  
Bolley P., 1978, SEMINAIRE GOULAOUICS
[5]  
Bolley P., 1987, Rendiconti, V45, P1
[6]  
Bolley P., 1981, Commun. Partial Differ. Equ, V6, P1057, DOI [10.1080/03605308108820205, DOI 10.1080/03605308108820205]
[7]   Nonradial Hormander algebras of several variables and convolution operators [J].
Bonet, J ;
Galbis, A ;
Momm, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) :2275-2291
[8]  
Bonet J, 2000, ANN ACAD SCI FENN-M, V25, P261
[9]   A comparison of two different ways to define classes of ultradifferentiable functions [J].
Bonet, Jose ;
Meise, Reinhold ;
Melikhov, Sergej N. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (03) :425-444
[10]  
Braun R.W., 1990, RESULTS MATH, V17, P206