PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells

被引:49
作者
Ghosh, MK
Sharma, P
Harbor, PC
O Rahaman, S
Haque, SJ
机构
[1] Cleveland Clin Fdn, Dept Canc Biol, Lerner Res Inst, Cleveland, OH 44195 USA
[2] Cleveland Clin Fdn, Brain Tumor Inst, Cleveland, OH 44195 USA
[3] Cleveland Clin Fdn, Dept Pulm & Crit Care Med, Cleveland, OH 44195 USA
关键词
glioblastoma multiforme; apoptosis; Stat3; AKT; EGFR;
D O I
10.1038/sj.onc.1208894
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glioblastoma multiforme (GBM) cells frequently harbor amplification and/or gain-of-function mutation of the EGFR gene leading to the activation of mul tiple signaling pathways. Blockade of EGFR activation inhibited the activation of both AKT and Stat3 in U87 and D54 GBM cells and induced spontaneous apoptosis, which were associated with reduction in the steady-state level of Mcl-1. Surprisingly, inhibition of PI3 kinase (PI3K) activity, which in turn inhibited AKT activation, significantly increased the DNA-binding activity of Stat3 in U87 and D54 cells. This was not due to an increase in the level of tyrosine-phosphorylated Stat3. Conversely, ectopic expression of constitutively activated AKT significantly decreased the DNA-binding activity of Stat3 in 293T cells. Interestingly, blockade of protein phosphatase 2A activity in GBM or 293T cells by calyculin A, which activated AKT, stabilized the phosphorylation of mul tiple Ser/Thr residues that were located in the transactivation domain (TAD) of Stat3 and this in turn completely ablated the DNA-binding activity of Stat3. Collectively, these results suggest that both Stat3 and AKT provide survival signals in U87 and D54 cells, and Ser/Thr phosphorylation of Stat3-TAD by the PI3K-AKT pathway negatively controls the DNA-binding function of Stat3.
引用
收藏
页码:7290 / 7300
页数:11
相关论文
共 52 条
[1]   Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance [J].
Aldape, KD ;
Ballman, K ;
Furth, A ;
Buckner, JC ;
Giannini, C ;
Burger, PC ;
Scheithauer, BW ;
Jenkins, RB ;
James, CD .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2004, 63 (07) :700-707
[2]   Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors [J].
Andjelkovic, M ;
Jakubowicz, T ;
Cron, P ;
Ming, XF ;
Han, JW ;
Hemmings, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) :5699-5704
[3]  
Ballif BA, 2001, CELL GROWTH DIFFER, V12, P397
[4]   Transcription - Signal transduction and the control of gene expression [J].
Brivanlou, AH ;
Darnell, JE .
SCIENCE, 2002, 295 (5556) :813-818
[5]   Stat3 as an oncogene [J].
Bromberg, JF ;
Wrzeszczynska, MH ;
Devgan, G ;
Zhao, YX ;
Pestell, RG ;
Albanese, C ;
Darnell, JE .
CELL, 1999, 98 (03) :295-303
[6]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[7]   Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells [J].
Catlett-Falcone, R ;
Landowski, TH ;
Oshiro, MM ;
Turkson, J ;
Levitzki, A ;
Savino, R ;
Ciliberto, G ;
Moscinski, L ;
Fernández-Luna, JL ;
Nuñez, G ;
Dalton, WS ;
Jove, R .
IMMUNITY, 1999, 10 (01) :105-115
[8]   Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA [J].
Chen, XM ;
Vinkemeier, U ;
Zhao, YX ;
Jeruzalmi, D ;
Darnell, JE ;
Kuriyan, J .
CELL, 1998, 93 (05) :827-839
[9]   Cellular survival: a play in three Akts [J].
Datta, SR ;
Brunet, A ;
Greenberg, ME .
GENES & DEVELOPMENT, 1999, 13 (22) :2905-2927
[10]   Serine phosphorylation of STATs [J].
Decker, T ;
Kovarik, P .
ONCOGENE, 2000, 19 (21) :2628-2637