Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery

被引:66
作者
Mouraviev, Andrei [1 ]
Detsky, Jay [3 ]
Sahgal, Arjun [3 ]
Ruschin, Mark [3 ]
Lee, Young K. [3 ]
Karam, Irene [3 ]
Heyn, Chris [3 ]
Stanisz, Greg J. [1 ,2 ]
Martel, Anne L. [1 ,2 ]
机构
[1] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[2] Sunnybrook Res Inst, Phys Sci, Toronto, ON, Canada
[3] Sunnybrook Hlth Sci Ctr, Odette Canc Ctr, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
brain metastases; radiomics; response prediction; neuro-oncology; local control; CRITERIA; TIME;
D O I
10.1093/neuonc/noaa007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Local response prediction for brain metastases (BM) after stereotactic radiosurgery (SRS) is challenging, particularly for smaller BM, as existing criteria are based solely on unidimensional measurements. This investigation sought to determine whether radiomic features provide additional value to routinely available clinical and dosimetric variables to predict local recurrence following SRS. Methods. Analyzed were 408 BM in 87 patients treated with SRS. A total of 440 radiomic features were extracted from the tumor core and the peritumoral regions, using the baseline pretreatment volumetric post-contrastT1 (T1c) and volumetricT2 fluid-attenuated inversion recovery (FLAIR) MRI sequences. Local tumor progression was determined based on Response Assessment in Neuro-Oncology-BM criteria, with a maximum axial diameter growth of >20% on the follow-upT1 c indicating local failure.The top radiomic features were determined based on resampled random forest (RF) feature importance. An RF classifier was trained using each set of features and evaluated using the area under the receiver operating characteristic curve (AUC). Results. The addition of any one of the top 10 radiomic features to the set of clinical features resulted in a statistically significant (P < 0.001) increase in the AUC. An optimized combination of radiomic and clinical features resulted in a 19% higher resampled AUC (mean = 0.793; 95% CI = 0.792-0.795) than clinical features alone (0.669, 0.668-0.671). Conclusions. The increase in AUC of the RF classifier, after incorporating radiomic features, suggests that quantitative characterization of tumor appearance on pretreatment T1c and FLAIR adds value to known clinical and dosimetric variables for predicting local failure.
引用
收藏
页码:797 / 805
页数:9
相关论文
共 50 条
  • [1] Predicting local control of brain metastases after stereotactic radiotherapy with clinical, radiomics and deep learning features
    Hemalatha Kanakarajan
    Wouter De Baene
    Patrick Hanssens
    Margriet Sitskoorn
    Radiation Oncology, 19 (1)
  • [2] Predicting local failure of brain metastases after stereotactic radiosurgery with radiomics on planning MR images and dose maps
    Wang, Hesheng
    Xue, Jinyu
    Qu, Tanxia
    Bernstein, Kenneth
    Chen, Ting
    Barbee, David
    Silverman, Joshua S.
    Kondziolka, Douglas
    MEDICAL PHYSICS, 2021, 48 (09) : 5522 - 5530
  • [3] Radiomics outperforms semantic features for prediction of response to stereotactic radiosurgery in brain metastases
    Gutsche, Robin
    Lohmann, Philipp
    Hoevels, Mauritius
    Ruess, Daniel
    Galldiks, Norbert
    Visser-Vandewalle, Veerle
    Treuer, Harald
    Ruge, Maximilian
    Kocher, Martin
    RADIOTHERAPY AND ONCOLOGY, 2022, 166 : 37 - 43
  • [4] Radiomics-based prediction of local control in patients with brain metastases following postoperative stereotactic radiotherapy
    Buchner, Josef A.
    Kofler, Florian
    Mayinger, Michael
    Christ, Sebastian M.
    Brunner, Thomas B.
    Wittig, Andrea
    Menze, Bjoern
    Zimmer, Claus
    Meyer, Bernhard
    Guckenberger, Matthias
    Andratschke, Nicolaus
    El Shafie, Rami A.
    Debus, Jurgen
    Rogers, Susanne
    Riesterer, Oliver
    Schulze, Katrin
    Feldmann, Horst J.
    Blanck, Oliver
    Zamboglou, Constantinos
    Ferentinos, Konstantinos
    Bilger-Zahringer, Angelika
    Grosu, Anca L.
    Wolff, Robert
    Piraud, Marie
    Eitz, Kerstin A.
    Combs, Stephanie E.
    Bernhardt, Denise
    Rueckert, Daniel
    Wiestler, Benedikt
    Peeken, Jan C.
    NEURO-ONCOLOGY, 2024, 26 (09) : 1638 - 1650
  • [5] Local control of melanoma brain metastases treated with stereotactic radiosurgery
    Bagshaw, Hilary P.
    Ly, David
    Suneja, Gita
    Jensen, Randy L.
    Shrieve, Dennis C.
    JOURNAL OF RADIOSURGERY AND SBRT, 2016, 4 (03): : 181 - 190
  • [6] Choosing a Prescription Isodose in Stereotactic Radiosurgery for Brain Metastases: Implications for Local Control
    Romano, Kara D.
    Trifiletti, Daniel M.
    Garda, Allison
    Xu, Zhiyuan
    Schlesinger, David
    Watkins, William T.
    Neal, Brian
    Larner, James M.
    Sheehan, Jason P.
    WORLD NEUROSURGERY, 2017, 98 : 761 - 767
  • [7] Recursive Partitioning Analysis for the Prediction of Stereotactic Radiosurgery Brain Metastases Lesion Control
    Rodrigues, George
    Zindler, Jaap
    Warner, Andrew
    Lagerwaard, Frank
    ONCOLOGIST, 2013, 18 (03) : 330 - 335
  • [8] Local Control and Survival Outcomes After Stereotactic Radiosurgery for Brain Metastases From Gastrointestinal Primaries: An International Multicenter Analysis
    Singh, Raj
    Bowden, Greg
    Mathieu, David
    Perlow, Haley K.
    Palmer, Joshua D.
    Elhamdani, Shahed
    Shepard, Matthew
    Liang, Yun
    Nabeel, Ahmed M.
    Reda, Wael A.
    Tawadros, Sameh R.
    Abdelkarim, Khaled
    El-Shehaby, Amr M. N.
    Emad, Reem M.
    Elazzazi, Ahmed Hesham
    Warnick, Ronald E.
    Gozal, Yair M.
    Daly, Megan
    McShane, Brendan
    Addis-Jackson, Marcel
    Karthikeyan, Gokul
    Smith, Sian
    Picozzi, Piero
    Franzini, Andrea
    Kaisman-Elbaz, Tehila
    Yang, Huai-che
    Wei, Zhishuo
    Legarreta, Andrew
    Hess, Judith
    Templeton, Kelsey
    Pikis, Stylianos
    Mantziaris, Georgios
    Simonova, Gabriela
    Liscak, Roman
    Peker, Selcuk
    Samanci, Yavuz
    Chiang, Veronica
    Niranjan, Ajay
    Kersh, Charles R.
    Lee, Cheng-Chia
    Trifiletti, Daniel M.
    Lunsford, L. Dade
    Sheehan, Jason P.
    NEUROSURGERY, 2023, 93 (03) : 592 - 598
  • [9] Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin
    Vogelbaum, MA
    Angelov, L
    Lee, SY
    Li, L
    Barnett, GH
    Suh, JH
    JOURNAL OF NEUROSURGERY, 2006, 104 (06) : 907 - 912
  • [10] Local control after stereotactic radiosurgery for brain metastases in patients with melanoma with and without BRAF mutation and treatment
    Ly, David
    Bagshaw, Hilary P.
    Anker, Christopher J.
    Tward, Jonathan D.
    Grossmann, Kenneth F.
    Jensen, Randy L.
    Shrieve, Dennis C.
    JOURNAL OF NEUROSURGERY, 2015, 123 (02) : 395 - 401