Oriented Ship Detector for Remote Sensing Imagery Based on Pairwise Branch Detection Head and SAR Feature Enhancement

被引:11
作者
He, Bokun [1 ]
Zhang, Qingyi [1 ]
Tong, Ming [1 ]
He, Chu [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
ship detection; deep learning; remote sensing imagery; SAR feature enhancement; pairwise head; EDGES;
D O I
10.3390/rs14092177
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, object detection in natural images has made a breakthrough, but it is still challenging in oriented ship detection for remote sensing imagery. Considering some limitations in this task, such as uncertain ship orientation, unspecific features for locating and classification in the complex optical environment, and multiplicative speckle interference of synthetic aperture radar (SAR), we propose an oriented ship detector based on the pairwise branch detection head and adaptive SAR feature enhancement. The details are as follows: (1) Firstly, the ships with arbitrary directions are described with a rotated ground truth, and an oriented region proposal network (ORPN) is designed to study the transformation from the horizontal region of interest to the rotated region of interest. The ORPN effectively improved the quality of the candidate area while only introducing a few parameters. (2) In view of the existing algorithms that tend to perform classification and regression prediction on the same output feature, this paper proposes a pairwise detection head (PBH) to design parallel branches to decouple classification and locating tasks, so that each branch can learn more task-specific features. (3) Inspired by the ratio-of-average detector in traditional SAR image processing, the SAR edge enhancement (SEE) module is proposed, which adaptively enhances edge pixels, and the threshold of the edge is learned by the channel-shared adaptive thresholds block. Experiments were carried out on both optical and SAR datasets. In the optical dataset, PBH combined with ORPN improved recall by 5.03%, and in the SAR dataset, the overall method achieved a maximum F1 score improvement of 6.07%; these results imply the validity of our method.
引用
收藏
页数:21
相关论文
共 46 条
[1]  
[Anonymous], 2016, Comput. Vis. Pattern Recogn.
[2]   ON DETECTING EDGES IN SPECKLE IMAGERY [J].
BOVIK, AC .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (10) :1618-1627
[3]  
Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
[4]  
Dalal N., 2005, 2005 IEEE COMPUTER S, P886
[5]   SAR-SIFT: A SIFT-Like Algorithm for SAR Images [J].
Dellinger, Flora ;
Delon, Julie ;
Gousseau, Yann ;
Michel, Julien ;
Tupin, Florence .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01) :453-466
[6]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[7]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577
[8]  
Fu C., 2017, DSSD: deconvolutional single shot detector
[9]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[10]  
He K., 2016, P IEEE C COMPUTER V