Intention Recognition with Recurrent Neural Networks for Dynamic Human-Robot Collaboration

被引:13
作者
Mavsar, Matija [1 ]
Denisa, Miha [1 ]
Nemec, Bojan [1 ]
Ude, Ales [1 ,2 ]
机构
[1] Jozef Stefan Inst, Dept Automat Biocybernet & Robot, Humanoid & Cognit Robot Lab, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
来源
2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR) | 2021年
关键词
MOVEMENT PRIMITIVES; PREDICTION;
D O I
10.1109/ICAR53236.2021.9659473
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new method to recognize the intention of a human worker while performing a collaborative task with a robot is proposed. For this purpose, two recurrent neural network (RNN) architectures capable of predicting the worker's target were developed. The first uses marker-based tracking of hand positions and the second RGB-D videos of human motion. The system was implemented to perform a collaborative assembly task. The results show high intention prediction accuracy for both networks, with accuracy increasing once a larger portion of human motion has been observed, making the proposed method viable for efficient and dynamic human-robot collaboration. Furthermore, we developed a framework that enables online adaptation of robot trajectories based on estimated human intentions.
引用
收藏
页码:208 / 215
页数:8
相关论文
共 23 条
[1]   Progress and prospects of the human-robot collaboration [J].
Ajoudani, Arash ;
Zanchettin, Andrea Maria ;
Ivaldi, Serena ;
Albu-Schaeffer, Alin ;
Kosuge, Kazuhiro ;
Khatib, Oussama .
AUTONOMOUS ROBOTS, 2018, 42 (05) :957-975
[2]   A Framework for Recognition and Prediction of Human Motions in Human-Robot Collaboration Using Probabilistic Motion Models [J].
Callens, Thomas ;
van der Have, Arthur ;
Van Rossom, Sam ;
De Schutter, Joris ;
Aertbelien, Erwin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :5151-5158
[3]  
Gams A, 2016, IEEE INT CONF ROBOT, P3028, DOI 10.1109/ICRA.2016.7487467
[4]  
Hinton G., 2012, COURS VID LECT
[5]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[6]   The vanishing gradient problem during learning recurrent neural nets and problem solutions [J].
Hochreiter, S .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1998, 6 (02) :107-116
[7]   Evaluating Fluency in Human-Robot Collaboration [J].
Hoffman, Guy .
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2019, 49 (03) :209-218
[8]   Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors [J].
Ijspeert, Auke Jan ;
Nakanishi, Jun ;
Hoffmann, Heiko ;
Pastor, Peter ;
Schaal, Stefan .
NEURAL COMPUTATION, 2013, 25 (02) :328-373
[9]   Human-Robot Collaboration Based on Motion Intention Estimation [J].
Li, Yanan ;
Ge, Shuzhi Sam .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (03) :1007-1014
[10]   Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks [J].
Maeda, Guilherme J. ;
Neumann, Gerhard ;
Ewerton, Marco ;
Lioutikov, Rudolf ;
Kroemer, Oliver ;
Peters, Jan .
AUTONOMOUS ROBOTS, 2017, 41 (03) :593-612