Caristi-Type Fixed Point Theorems and Some Generalizations on M-Metric Space

被引:10
作者
Altun, Ishak [1 ]
Sahin, Hakan [2 ]
Turkoglu, Duran [3 ]
机构
[1] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
[2] Amasya Univ, Fac Sci & Arts, Dept Math, Amasya, Turkey
[3] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
关键词
M-metric space; Fixed point; Single valued mapping; MAPPINGS;
D O I
10.1007/s40840-019-00823-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, taking into account Caristi's fixed point results on both metric spaces and partial metric spaces, we present their some extensions and generalizations on M-metric spaces. First, by providing a counter example, we noticed that a recent result on Caristi-type fixed point theorem on M-metric space is not suitable. Then we propounded two versions of Caristi's inequality and proved some related fixed point results on M -metric space.
引用
收藏
页码:2647 / 2657
页数:11
相关论文
共 13 条
[1]  
Abodayeh K, 2016, J MATH ANAL, V7, P1
[2]  
Acar Ö, 2013, FIXED POINT THEOR-RO, V14, P3
[3]   Some generalizations of Caristi type fixed point theorem on partial metric spaces [J].
Acar, Ozlem ;
Altun, Ishak .
FILOMAT, 2012, 26 (04) :833-837
[4]   New extension of p-metric spaces with some fixed-point results on M-metric spaces [J].
Asadi, Mehdi ;
Karapinar, Erdal ;
Salimi, Peyman .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[5]  
Assaf S, 2017, ARXIV171208782
[6]   Fixed point theorems for weakly contractive multivalued maps [J].
Bae, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 284 (02) :690-697
[7]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[8]   CARISTIS FIXED-POINT THEOREM AND METRIC CONVEXITY [J].
KIRK, WA .
COLLOQUIUM MATHEMATICUM, 1976, 36 (01) :81-86
[9]  
Matthews S. G, 1994, PAPERS GEN TOPOLOGY, V728, P183, DOI [10.1111/j.1749-6632.1994.tb44144.x, 10.1111j.1749-6632.1994.tb44144.x////]
[10]  
Meghea I., 2009, Ekeland Variational Principle: With Generalizations and Variants