Parallel fractal image compression using quadtree partition with task and dynamic parallelism

被引:7
作者
Hernandez-Lopez, Francisco J. [1 ]
Muniz-Perez, Omar [1 ]
机构
[1] CONACYT Ctr Invest Matemat AC, PCTY, CIMAT Unidad Merida, Merida 97302, Yucatan, Mexico
关键词
Fractal image compression; Quadtree; Task parallelism; Dynamic parallelism; Multi-core; GPU;
D O I
10.1007/s11554-021-01193-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fractal image compression is a lossy compression technique based on the iterative function system, which can be used to reduce the storage space and increase the speed of data transmission. The main disadvantage of fractal image compression is the high computational cost of the encoding step, compared with the popular image compression based on discrete cosine transform. The aim of this paper is the development of parallel implementations of fractal image compression using quadtree partition. We develop two parallel implementations: the first one uses task parallelism over a multi-core system and the second uses dynamic parallelism over a GPU architecture. We show performance comparisons of the parallel implementations using standard images to compare the capabilities of these parallel architectures. The proposed parallel implementations achieve speedups over the serial implementation of approximately 15x using the multi-core CPU and 25x using the GPU.
引用
收藏
页码:391 / 402
页数:12
相关论文
共 30 条
[1]   CUDA implementation of fractal image compression [J].
Al Sideiri, Abir ;
Alzeidi, Nasser ;
Al Hammoshi, Mayyada ;
Chauhan, Munesh Singh ;
AlFarsi, Ghaliya .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (05) :1375-1387
[2]  
[Anonymous], 2010, Programming Massively Parallel Processors: A Hands-on Approach
[3]   The Design of OpenMP Tasks [J].
Ayguade, Eduard ;
Copty, Nawal ;
Duran, Alejandro ;
Hoeflinger, Jay ;
Lin, Yuan ;
Massaioli, Federico ;
Teruel, Xavier ;
Unnikrishnan, Priya ;
Zhang, Guansong .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2009, 20 (03) :404-418
[4]  
Barlas G., 2014, Multicore and GPU Programming: An Integrated Approach
[5]  
Cao Hua, 2010, 2010 INT C E PROD E, P1, DOI DOI 10.1016/j.apm.2017.12.027
[6]  
Chapman B., 2008, USING OPENMP PORTABL
[7]   Fractal Image Compression Using Dynamically Pipelined GPU Clusters [J].
Chauhan, Munesh Singh ;
Negi, Ashish ;
Rana, Prashant Singh .
PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2012), 2014, 236 :575-581
[8]  
Cheng John, 2014, Professional CUDA C programming
[9]  
Chitra A., 1997, IFAC PROCD, V30, P307, DOI [10.1016/S1474-6670(17)41341-3, DOI 10.1016/S1474-6670(17)41341-3]
[10]  
Cook S, 2013, CUDA PROGRAMMING: A DEVELOPER'S GUIDE TO PARALLEL COMPUTING WITH GPUS, P1, DOI 10.1016/B978-0-12-415933-4.00001-6