Hybrid deep convolutional model-based emotion recognition using multiple physiological signals

被引:13
|
作者
Akbulut, Fatma Patlar [1 ]
机构
[1] Istanbul Kultur Univ, Dept Comp Engn, Istanbul, Turkey
关键词
Emotion recognition; deep learning; CNN; transfer learning; affective computing; EXPRESSION; SYSTEM; PERCEPTION; EXTRACTION; SERVICE;
D O I
10.1080/10255842.2022.2032682
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Emotion recognition has become increasingly utilized in the medical, advertising, and military domains. Recognizing the cues of emotion from human behaviors or physiological responses is encouraging for the research community. However, extracting true characteristics from sensor data to understand emotions can be challenging due to the complex nature of these signals. Therefore, advanced feature engineering techniques are required for accurate signal recognition. This study presents a hybrid affective model that employs a transfer learning approach for emotion classification using large-frame sensor signals which employ a genuine dataset of signal fusion gathered from 30 participants using wearable sensor systems interconnected with mobile devices. The proposed approach implements several learning algorithms such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and several other shallow methods on the sensor input to handle the requirements for the traditional feature extraction process. The findings reveal that the use of deep learning methods is satisfactory in affect recognition when a great number of frames is employed, and the proposed hybrid deep model outperforms traditional neural network (overall accuracy of 54%) and deep learning approaches (overall accuracy of 76%), with an average classification accuracy of 93%. This hybrid deep model also has a higher accuracy than our previously proposed statistical autoregressive hidden Markov model (AR-HMM) approach, with 88.6% accuracy. Accuracy assessment was performed by means of several statistics measures (accuracy, precision, recall, F-measure, and RMSE).
引用
收藏
页码:1678 / 1690
页数:13
相关论文
共 50 条
  • [31] A Research on Emotion Recognition of the Elderly Based on Transformer and Physiological Signals
    Feng, Guohong
    Wang, Hongen
    Wang, Mengdi
    Zheng, Xiao
    Zhang, Runze
    ELECTRONICS, 2024, 13 (15)
  • [32] MF-Net: a multimodal fusion network for emotion recognition based on multiple physiological signals
    Zhu, Lei
    Ding, Yu
    Huang, Aiai
    Tan, Xufei
    Zhang, Jianhai
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [33] Self supervised learning based emotion recognition using physiological signals
    Zhang, Min
    Cui, Yanli
    FRONTIERS IN HUMAN NEUROSCIENCE, 2024, 18
  • [34] Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network
    Nagarajan Ganapathy
    Yedukondala Rao Veeranki
    Himanshu Kumar
    Ramakrishnan Swaminathan
    Journal of Medical Systems, 2021, 45
  • [35] Emotion Recognition Based on Physiological Signals Using Convolution Neural Networks
    Song, Tongshuai
    Lu, Guanming
    Yan, Jingjie
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 161 - 165
  • [36] Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network
    Ganapathy, Nagarajan
    Veeranki, Yedukondala Rao
    Kumar, Himanshu
    Swaminathan, Ramakrishnan
    JOURNAL OF MEDICAL SYSTEMS, 2021, 45 (04)
  • [37] Based on Support Vector Regression for Emotion Recognition using Physiological Signals
    Chang, Chuan-Yu
    Zheng, Jun-Ying
    Wang, Chi-Jane
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [38] Emotion recognition of EEG signals based on contrastive learning graph convolutional model
    Zhang, Yiling
    Liao, Yuan
    Chen, Wei
    Zhang, Xiruo
    Huang, Liya
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (04)
  • [39] An attention-based hybrid deep learning model for EEG emotion recognition
    Zhang, Yong
    Zhang, Yidie
    Wang, Shuai
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2305 - 2313
  • [40] An attention-based hybrid deep learning model for EEG emotion recognition
    Yong Zhang
    Yidie Zhang
    Shuai Wang
    Signal, Image and Video Processing, 2023, 17 : 2305 - 2313