The Moutard Transformation for the Davey-Stewartson II Equation and Its Geometrical Meaning

被引:4
作者
Taimanov, I. A. [1 ,2 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
Davey-Stewartson equation; Moutard transformation; surfaces in four-dimensional space; 2-DIMENSIONAL DIRAC OPERATORS; UP SOLUTIONS; BLOW-UP; SURFACES;
D O I
10.1134/S0001434621110122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Moutard transformation for the solutions of the Davey-Stewartson II equation is constructed. It is geometrically interpreted using the spinor (Weierstrass) representation of surfaces in four-dimensional Euclidean space. Examples of solutions that have smooth fast decaying initial data and lose regularity in finite time are constructed by using the Moutard transformation and minimal surfaces.
引用
收藏
页码:754 / 766
页数:13
相关论文
共 20 条
  • [1] [Anonymous], 2008, DOKL AKAD NAUK+
  • [2] 3-DIMENSIONAL PACKETS OF SURFACE-WAVES
    DAVEY, A
    STEWARTSON, K
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) : 101 - 110
  • [3] Creation and annihilation of point-potentials using Moutard-type transform in spectral variable
    Grinevich, P. G.
    Novikov, R. G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (09)
  • [4] Moutard transforms for the conductivity equation
    Grinevich, P. G.
    Novikov, R. G.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (10) : 2209 - 2222
  • [5] Moutard Transform for Generalized Analytic Functions
    Grinevich, P. G.
    Novikov, R. G.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2984 - 2995
  • [6] IST Versus PDE: A Comparative Study
    Klein, Christian
    Saut, Jean-Claude
    [J]. HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, : 383 - 449
  • [7] Konopelchenko BG, 1996, STUD APPL MATH, V96, P9
  • [8] Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy
    Konopelchenko, BG
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (01) : 61 - 74
  • [9] DARBOUX TRANSFORMS FOR DAVEY-STEWARTSON EQUATIONS AND SOLITONS IN MULTIDIMENSIONS
    LEBLE, SB
    SALLE, MA
    YUROV, AV
    [J]. INVERSE PROBLEMS, 1992, 8 (02) : 207 - 218
  • [10] The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space
    Matuev, R. M.
    Taimanov, I. A.
    [J]. MATHEMATICAL NOTES, 2016, 100 (5-6) : 835 - 846