On the Δ-equivalence of Boolean functions

被引:1
作者
Logachev, OlegA [1 ]
Fedorov, Sergey N. [1 ]
Yashchenko, Valerii V. [1 ]
机构
[1] Lomonosov Univ, Informat Secur Inst, Moscow, Russia
关键词
Boolean function; discrete Fourier transform; Walsh-Hadamard transform; cross-correlation; autocorrelation; nonlinearity; curvature; correlation immunity; propagation criterion; global avalanche characteristics;
D O I
10.1515/dma-2020-0009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new equivalence relation on the set of Boolean functions is introduced: functions are declared to be Delta-equivalent if their autocorrelation functions are equal. It turns out that this classification agrees well with the cryptographic properties of Boolean functions: for functions belonging to the same Delta-equivalence class a number of their cryptographic characteristics do coincide. For example, all bent-functions (of a fixed number of variables) make up one class.
引用
收藏
页码:93 / 101
页数:9
相关论文
共 12 条
[1]   On some measures of nonlinearity for Boolean functions [J].
Alekseev, E. K. .
PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2011, 12 (02) :5-16
[2]   Classification of correlation-immune and minimal correlation-immune Boolean functions of 4 and 5 variables [J].
Alekseev, Evgeniy K. ;
Karelina, Ekaterina K. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2015, 25 (04) :193-202
[3]  
Cheremushkin A. V., 2005, MATEMATICHESKIE VOPR, P261
[4]   The sum of modules of Walsh coefficients of Boolean functions [J].
Jimenez, Reynier A. De la Cruz ;
Kamlovskiy, Oleg V. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2016, 26 (05) :259-272
[5]  
[Камловский Олег Витальевич Kamlovskii Oleg Vital'evich], 2017, [Математические вопросы криптографии, Matematicheskie voprosy kriptografii], V8, P75, DOI 10.4213/mvk240
[6]  
Logachev O. A., 2011, BOOLEAN FUNCTIONS CO
[7]   Boolean functions as points on the hypersphere in the Euclidean space [J].
Logachev, Oleg A. ;
Fedorov, Sergey N. ;
Yashchenko, Valerii V. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2019, 29 (02) :89-101
[8]  
MacWilliams E. J., 1977, THEORY ERROR CORRE 1
[9]  
O'Donnell R, 2014, ANAL BOOLEAN FUNCTIO, DOI DOI 10.1017/CBO9781139814782
[10]   BENT FUNCTIONS [J].
ROTHAUS, OS .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1976, 20 (03) :300-305