Empirical-likelihood-based confidence intervals for quantile regression models with longitudinal data

被引:3
|
作者
Li, Mei [1 ]
Ratnasingam, Suthakaran [2 ]
Ning, Wei [1 ,3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Calif State Univ San Bernardino, Dept Math, San Bernardino, CA 92407 USA
[3] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
关键词
LINEAR-REGRESSION; INFERENCE;
D O I
10.1080/00949655.2022.2043322
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present three empirical likelihood (EL)-based inference procedures to construct confidence intervals for quantile regression models with longitudinal data. The traditional EL-based method suffers from an under-coverage problem, especially in small sample sizes. The proposed modified EL-based non-parametric methods including adjusted empirical likelihood (AEL), the transformed empirical likelihood (TEL), and the transformed adjusted empirical likelihood (TAEL) exhibit good finite sample performance over other existing procedures. Simulations are conducted to compare the performances of the proposed methods with the other methods in terms of coverage probabilities and average lengths of confidence intervals under different scenarios.
引用
收藏
页码:2536 / 2553
页数:18
相关论文
共 50 条
  • [1] EMPIRICAL-LIKELIHOOD-BASED CONFIDENCE INTERVALS FOR CONDITIONAL VARIANCE IN HETEROSKEDASTIC REGRESSION MODELS
    Chan, Ngai Hang
    Peng, Liang
    Zhang, Dabao
    ECONOMETRIC THEORY, 2011, 27 (01) : 154 - 177
  • [2] Empirical likelihood for quantile regression models with longitudinal data
    Wang, Huixia Judy
    Zhu, Zhongyi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1603 - 1615
  • [3] Empirical likelihood and quantile regression in longitudinal data analysis
    Tang, Cheng Yong
    Leng, Chenlei
    BIOMETRIKA, 2011, 98 (04) : 1001 - 1006
  • [4] Smoothed empirical likelihood confidence intervals for quantile regression parameters with auxiliary information
    Lv, Xiaofeng
    Li, Rui
    STATISTICAL METHODOLOGY, 2013, 15 : 46 - 54
  • [5] Weighted quantile regression for longitudinal data using empirical likelihood
    Yuan XiaoHui
    Lin Nan
    Dong XiaoGang
    Liu TianQing
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 147 - 164
  • [6] Weighted quantile regression for longitudinal data using empirical likelihood
    YUAN XiaoHui
    LIN Nan
    DONG XiaoGang
    LIU TianQing
    ScienceChina(Mathematics), 2017, 60 (01) : 147 - 164
  • [7] Weighted quantile regression for longitudinal data using empirical likelihood
    XiaoHui Yuan
    Nan Lin
    XiaoGang Dong
    TianQing Liu
    Science China Mathematics, 2017, 60 : 147 - 164
  • [8] An empirical likelihood method for quantile regression models with censored data
    Gao, Qibing
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    Liu, XiaoXiao
    METRIKA, 2021, 84 (01) : 75 - 96
  • [9] An empirical likelihood method for quantile regression models with censored data
    Qibing Gao
    Xiuqing Zhou
    Yanqin Feng
    Xiuli Du
    XiaoXiao Liu
    Metrika, 2021, 84 : 75 - 96
  • [10] Conditional empirical likelihood for quantile regression models
    Wang, Wu
    Zhu, Zhongyi
    METRIKA, 2017, 80 (01) : 1 - 16