Estimating Uncertainties of Recurrent Neural Networks in Application to Multitarget Tracking

被引:0
作者
Pollithy, Daniel [1 ]
Reith-Braun, Marcel [1 ]
Pfaff, Florian [1 ]
Hanebeck, Uwe D. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Anthropomat & Robot, Intelligent Sensor Actuator Syst Lab ISAS, Karlsruhe, Germany
来源
2020 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI) | 2020年
关键词
D O I
10.1109/mfi49285.2020.9235216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multitarget tracking, finding an association between the new measurements and the known targets is a crucial challenge. By considering both the uncertainties of all the predictions and measurements, the most likely association can be determined. While Kalman filters inherently provide the predicted uncertainties, they require a predefined model. In contrast, neural networks offer data-driven possibilities, but provide only deterministic predictions. We therefore compare two common approaches for uncertainty estimation in neural networks applied to LSTMs using our multitarget tracking benchmark for optical belt sorting. As a result, we show that the estimation of measurement uncertainties improves the tracking results of LSTMs, posing them as a viable alternative to manual motion modeling.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 15 条
  • [1] Blackman S. S., 1999, Design and analysis of modern tracking systems
  • [2] Choe Y. J., 2017, PROBABILISTIC INTERP
  • [3] Fortunato M, 2019, Arxiv, DOI [arXiv:1704.02798, DOI 10.48550/ARXIV.1704.02798]
  • [4] Gal Y, 2016, ADV NEUR IN, V29
  • [5] Gal Y, 2017, ADV NEUR IN, V30
  • [6] Gal Y, 2016, PR MACH LEARN RES, V48
  • [7] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [8] Kendall A, 2017, 31 ANN C NEURAL INFO, V30
  • [9] Kuleshov V, 2018, PR MACH LEARN RES, V80
  • [10] Introduction to the Issue on Multitarget Tracking
    Mallick, Mahendra
    Vo, Ba-Ngu
    Kirubarajan, Thia
    Arulampalam, Sanjeev
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2013, 7 (03) : 373 - 375