Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation

被引:129
作者
Riquelme, Sebastian A. [1 ]
Liimatta, Kalle [1 ]
Lung, Tania Wong Fok [1 ]
Fields, Blanche [1 ]
Ahn, Danielle [1 ]
Chen, David [1 ]
Lozano, Carmen [2 ]
Saenz, Yolanda [2 ]
Uhlemann, Anne-Catrin [3 ]
Kahl, Barbara C. [4 ]
Britto, Clemente J. [5 ]
DiMango, Emily [3 ]
Prince, Alice [1 ]
机构
[1] Columbia Univ, Dept Pediat, New York, NY 10032 USA
[2] Ctr Invest Biomed Rioja CIBIR, Microbiol Mol, Area Microbiol Mol, Logrono 26006, LG, Spain
[3] Columbia Univ, Med Ctr, Dept Med, New York, NY 10032 USA
[4] Univ Hosp Munster, Inst Med Microbiol, D-48149 Munster, Germany
[5] Yale Univ, Sch Med, Sect Pulm Crit Care & Sleep Med, New Haven, CT 06520 USA
基金
加拿大创新基金会;
关键词
CYSTIC-FIBROSIS; SUCCINATE-DEHYDROGENASE; CATABOLITE REPRESSION; RESISTANCE; MEMBRANE; ALGINATE; GLUCOSE-6-PHOSPHATE-DEHYDROGENASE; MITOCHONDRIA; SECRETION; MUTANT;
D O I
10.1016/j.cmet.2020.04.017
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The bacterium Pseudomonas aeruginosa is especially pathogenic, often being associated with intractable pneumonia and high mortality. How P. aeruginosa avoids immune clearance and persists in the inflamed human airway remains poorly understood. In this study, we show that P. aeruginosa can exploit the host immune response to maintain infection. Notably, unlike other opportunistic bacteria, we found that P. aeruginosa alters its metabolic and immunostimulatory properties in response to itaconate, an abundant host-derived immunometabolite in the infected lung. Itaconate induces bacterial membrane stress, resulting in downregulation of lipopolysaccharides (LPS) and upregulation of extracellular polysaccharides (EPS). These itaconate-adapted P. aeruginosa accumulate lptD mutations, which favor itaconate assimilation and biofilm formation. EPS, in turn, induces itaconate production by myeloid cells, both in the airway and systemically, skewing the host immune response to one permissive of chronic infection. Thus, the metabolic versatility of P. aeruginosa needs to be taken into account when designing therapies.
引用
收藏
页码:1091 / +
页数:22
相关论文
共 56 条
[1]  
[Anonymous], 2017, Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities
[2]   Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa [J].
Arai, Hiroyuki .
FRONTIERS IN MICROBIOLOGY, 2011, 2
[3]   Deletion of a Conserved cis-Element in the Ifng Locus Highlights the Role of Acute Histone Acetylation in Modulating Inducible Gene Transcription [J].
Balasubramani, Anand ;
Winstead, Colleen J. ;
Turner, Henrietta ;
Janowski, Karen M. ;
Harbour, Stacey N. ;
Shibata, Yoichiro ;
Crawford, Gregory E. ;
Hatton, Robin D. ;
Weaver, Casey T. .
PLOS GENETICS, 2014, 10 (01)
[4]   Mutant Alleles of lptD Increase the Permeability of Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics [J].
Balibar, Carl J. ;
Grabowicz, Marcin .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (02) :845-854
[5]   Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis [J].
Bambouskova, Monika ;
Gorvel, Laurent ;
Lampropoulou, Vicky ;
Sergushichev, Alexey ;
Loginicheva, Ekaterina ;
Johnson, Kendall ;
Korenfeld, Daniel ;
Mathyer, Mary Elizabeth ;
Kim, Hyeryun ;
Huang, Li-Hao ;
Duncan, Dustin ;
Bregman, Howard ;
Keskin, Abdurrahman ;
Santeford, Andrea ;
Apte, Rajendra S. ;
Sehgal, Raghav ;
Johnson, Britney ;
Amarasinghe, Gaya K. ;
Soares, Miguel P. ;
Satoh, Takashi ;
Akira, Shizuo ;
Hai, Tsonwin ;
Strong, Cristina de Guzman ;
Auclair, Karine ;
Roddy, Thomas P. ;
Biller, Scott A. ;
Jovanovic, Marko ;
Klechevsky, Eynav ;
Stewart, Kelly M. ;
Randolph, Gwendalyn J. ;
Artyomov, Maxim N. .
NATURE, 2018, 556 (7702) :501-+
[6]   Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens [J].
Botos, Istvan ;
Majdalani, Nadim ;
Mayclin, Stephen J. ;
McCarthy, Jennifer Gehret ;
Lundquist, Karl ;
Wojtowicz, Damian ;
Barnard, Travis J. ;
Gumbart, James C. ;
Buchanan, Susan K. .
STRUCTURE, 2016, 24 (06) :965-976
[7]   Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model [J].
Bragonzi, A ;
Worlitzsch, D ;
Pier, GB ;
Timpert, P ;
Ulrich, M ;
Hentzer, M ;
Andersen, JB ;
Givskov, M ;
Conese, M ;
Döring, G .
JOURNAL OF INFECTIOUS DISEASES, 2005, 192 (03) :410-419
[8]   Catabolite repression control in the Pseudomonads [J].
Collier, DN ;
Hager, PW ;
Phibbs, PV .
RESEARCH IN MICROBIOLOGY, 1996, 147 (6-7) :551-561
[9]   Pseudomonas aeruginosa transcriptome during human infection [J].
Cornforth, Daniel M. ;
Dees, Justine L. ;
Ibberson, Carolyn B. ;
Huse, Holly K. ;
Mathiesen, Inger H. ;
Kirketerp-Moller, Klaus ;
Wolcott, Randy D. ;
Rumbaugh, Kendra P. ;
Bjarnsholt, Thomas ;
Whiteley, Marvin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (22) :E5125-E5134
[10]   PSEUDOMONAS-AERUGINOSA, MUCOIDY AND THE CHRONIC INFECTION PHENOTYPE IN CYSTIC-FIBROSIS [J].
DERETIC, V ;
SCHURR, MJ ;
YU, HW .
TRENDS IN MICROBIOLOGY, 1995, 3 (09) :351-356