Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series

被引:56
作者
Hassani, H. [1 ]
Avazzadeh, Z. [2 ]
Machado, J. A. Tenreiro [3 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, Shahrekord, Iran
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[3] Polytech Porto, Dept Elect Engn, Inst Engn, R Dr Antonio Bernardino Almeida 4249-015, P-431 Porto, Portugal
关键词
Variable-order space-time fractional telegraph equation; Transcendental Bernstein series; Optimization method; Operational matrix; Control parameters; PARTIAL-DIFFERENTIAL-EQUATIONS; OPERATIONAL MATRIX; LEGENDRE WAVELETS; SIMULATION; ALGORITHM; DIRICHLET; APPROXIMATIONS; DERIVATIVES; CALCULUS;
D O I
10.1007/s00366-019-00736-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the transcendental Bernstein series (TBS) as a generalization of the classical Bernstein polynomials for solving the variable-order space-time fractional telegraph equation (V-STFTE). An approximation method using optimization techniques and the TBS is introduced. The solution of the problem under consideration is expanded in terms of TBS with unknown free coefficients and control parameters. The new corresponding operational matrices of variable-order fractional derivatives, in the Caputo type, are derived. The proposed approach reduces the V-STFTE to a system of algebraic equations and, subsequently, to find the free coefficients and control parameters using the Lagrange multipliers technique. The convergence analysis of the method is guranteed by means of a new theorem concerning the TBS. The experimental results confirm the high accuracy and computational efficiency of the TBS method.
引用
收藏
页码:867 / 878
页数:12
相关论文
共 41 条
[1]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[2]   Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1100-1117
[3]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[4]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[5]   An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation [J].
Dahaghin, M. Sh. ;
Hassani, H. .
NONLINEAR DYNAMICS, 2017, 88 (03) :1587-1598
[6]   A new optimization method for a class of time fractional convection-diffusion-wave equations with variable coefficients [J].
Dahaghin, M. Sh. ;
Hassani, H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (03)
[7]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[8]   The Adomian decomposition method for solving partial differential equations of fractal order in finite domains [J].
El-Sayed, A. M. A. ;
Gaber, M. .
PHYSICS LETTERS A, 2006, 359 (03) :175-182
[9]   On fractional calculus and fractional multipoles in electromagnetism [J].
Engheta, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (04) :554-566
[10]   Numerical analysis of a two-parameter fractional telegraph equation [J].
Ford, Neville J. ;
Manuela Rodrigues, M. ;
Xiao, Jingyu ;
Yan, Yubin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 249 :95-106