Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning

被引:35
|
作者
Mueller, Yvonne M. [1 ]
Schrama, Thijs J. [1 ]
Ruijten, Rik [1 ]
Schreurs, Marco W. J. [1 ]
Grashof, Dwin G. B. [1 ]
van de Werken, Harmen J. G. [1 ,2 ]
Lasinio, Giovanna Jona [3 ]
Alvarez-Sierra, Daniel [4 ]
Kiernan, Caoimhe H. [1 ]
Eiro, Melisa D. Castro [1 ]
van Meurs, Marjan [1 ]
Brouwers-Haspels, Inge [1 ]
Zhao, Manzhi [1 ]
Li, Ling [1 ]
de Wit, Harm [1 ]
Ouzounis, Christos A. [5 ,6 ]
Wilmsen, Merel E. P. [1 ]
Alofs, Tessa M. [1 ]
Laport, Danique A. [1 ]
van Wees, Tamara [1 ]
Kraker, Geoffrey [7 ]
Jaimes, Maria C. [7 ]
Van Bockstael, Sebastiaan [7 ]
Hernandez-Gonzalez, Manuel [4 ,8 ,9 ]
Rokx, Casper [10 ,11 ]
Rijnders, Bart J. A. [10 ,11 ]
Pujol-Borrell, Ricardo [4 ,8 ,9 ,12 ]
Katsikis, Peter D. [1 ]
机构
[1] Erasmus MC, Dept Immunol, Rotterdam, Netherlands
[2] Erasmus MC, Canc Computat Biol Ctr, Erasmus MC Canc Inst, Rotterdam, Netherlands
[3] Univ Roma La Sapienza, Dept Stat Sci, Rome, Italy
[4] Hosp Univ Vall dHebron, Immunol Div, Campus Vall dHebron, Barcelona, Spain
[5] Aristotle Univ Thessaloniki, Fac Sci, Sch Informat, Thessaloniki, Greece
[6] Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, Thessaloniki, Greece
[7] Cytek Biosci, Fremont, CA USA
[8] Univ Autonoma Barcelona, Cell Biol Physiol & Immunol Dept, Barcelona, Spain
[9] Vall dHebron Inst Recerca VHIR, Translat Immunol Res Grp, Campus Vall dHebron, Barcelona, Spain
[10] Erasmus MC, Dept Internal Med, Sect Infect Dis, Rotterdam, Netherlands
[11] Erasmus MC, Dept Med Microbiol & Infect Dis, Rotterdam, Netherlands
[12] Vall dHebron Inst Oncol VHIO, Barcelona, Spain
基金
欧盟地平线“2020”;
关键词
HEALTH; ANTIBODIES;
D O I
10.1038/s41467-022-28621-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient's immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy. Developing predictive methods to identify patients with high risk of severe COVID-19 disease is of crucial importance. Authors show here that by measuring anti-SARS-CoV-2 antibody and cytokine levels at the time of hospital admission and integrating the data by unsupervised hierarchical clustering/machine learning, it is possible to predict unfavourable outcome.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Molecular markers for early stratification of disease severity and progression in COVID-19
    Kashyap, Anusha
    Sebastian, Savitha Anne
    NarayanaSwamy, Sree Raksha Krishnaiyer
    Raksha, KalyanKumar
    Krishnamurthy, Hanumanthappa
    Krishna, Bhuvana
    D'Souza, George
    Idiculla, Jyothi
    Vyas, Neha
    BIOLOGY METHODS & PROTOCOLS, 2022, 7 (01):
  • [12] Prevalence and severity of malnutrition in hospitalized COVID-19 patients
    Bedock, Dorothee
    Lassen, Pierre Bel
    Mathian, Alexis
    Moreau, Pauline
    Couffignal, Julie
    Ciangura, Cecile
    Poitou-Bernert, Christine
    Jeannin, Anne-Caroline
    Mosbah, Helena
    Fadlallah, Jehane
    Amoura, Zahir
    Oppert, Jean-Michel
    Faucher, Pauline
    CLINICAL NUTRITION ESPEN, 2020, 40 : 214 - 219
  • [13] Severity Profile of COVID-19 in Hospitalized Pediatric Patients
    da Costa, Vania Chagas
    Montarroyos, Ulisses Ramos
    Lopes, Katiuscia Araujo de Miranda
    dos Santos, Ana Celia Oliveira
    CHILDREN-BASEL, 2024, 11 (10):
  • [14] Severity of Myocardial Injury in COVID-19 Hospitalized Patients
    Sanghvi, Saagar K.
    Schwarzman, Logan
    Nazir, Noreen
    Konda, Sreenivas
    CIRCULATION, 2020, 142
  • [15] Stratification of the Mortality Risk of COVID-19 Patients by using Machine Learning Algorithms
    Reuther, Janina
    Fomenko, Vlad
    Guelow, Karsten
    Reuther, Stefan
    Spreiter, Lucas
    Schmid, Stephan
    Mueller-Schilling, Martina
    INTERNIST, 2021, 62 (SUPPL 2): : 197 - 197
  • [16] Identification and Prediction of Clinical Phenotypes in Hospitalized Patients With COVID-19: Machine Learning From Medical Records
    Velez, Tom
    Wang, Tony
    Garibaldi, Brian
    Singman, Eric
    Koutroulis, Ioannis
    JMIR FORMATIVE RESEARCH, 2023, 7
  • [17] Using machine learning on clinical data to identify unexpected patterns in groups of COVID-19 patients
    Hannah Paris Cowley
    Michael S. Robinette
    Jordan K. Matelsky
    Daniel Xenes
    Aparajita Kashyap
    Nabeela F. Ibrahim
    Matthew L. Robinson
    Scott Zeger
    Brian T. Garibaldi
    William Gray-Roncal
    Scientific Reports, 13 (1)
  • [18] Using machine learning on clinical data to identify unexpected patterns in groups of COVID-19 patients
    Cowley, Hannah Paris
    Robinette, Michael S.
    Matelsky, Jordan K.
    Xenes, Daniel
    Kashyap, Aparajita
    Ibrahim, Nabeela F.
    Robinson, Matthew L.
    Zeger, Scott
    Garibaldi, Brian T.
    Gray-Roncal, William
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [19] Predicting Mortality in Hospitalized COVID-19 Patients in Zambia: An Application of Machine Learning
    Mulenga, Clyde
    Kaonga, Patrick
    Hamoonga, Raymond
    Mazaba, Mazyanga Lucy
    Chabala, Freeman
    Musonda, Patrick
    GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS, 2023, 2023
  • [20] Unsupervised machine learning clustering approach for hospitalized COVID-19 pneumonia patients
    Nalinthasnai, Nuttinan
    Thammasudjarit, Ratchainant
    Tassaneyasin, Tanapat
    Eksombatchai, Dararat
    Sungkanuparph, Somnuek
    Boonsarngsuk, Viboon
    Sutherasan, Yuda
    Junhasavasdikul, Detajin
    Theerawit, Pongdhep
    Petnak, Tananchai
    BMC PULMONARY MEDICINE, 2025, 25 (01):