The Barcelona Predictive Model of Clinically Significant Prostate Cancer

被引:29
作者
Morote, Juan [1 ,2 ]
Borque-Fernando, Angel [3 ]
Triquell, Marina [1 ,2 ]
Celma, Anna [1 ,2 ]
Regis, Lucas [1 ,2 ]
Escobar, Manel [4 ]
Mast, Richard [4 ]
de Torres, Ines M. [5 ,6 ]
Semidey, Maria E. [5 ,6 ]
Abascal, Jose M. [7 ]
Sola, Carles [7 ]
Servian, Pol [8 ]
Salvador, Daniel [8 ]
Santamaria, Anna [9 ]
Planas, Jacques [1 ]
Esteban, Luis M. [10 ]
Trilla, Enrique [1 ,2 ]
机构
[1] Vall dHebron Hosp, Dept Urol, Barcelona 08035, Spain
[2] Univ Autonoma Barcelona, Dept Surg, Barcelona 08193, Spain
[3] Hosp Univ Miguel Servet, Dept Urol, IIS Aragon, Zaragoza 50009, Spain
[4] Vall dHebron Hosp, Dept Radiol, Barcelona 08035, Spain
[5] Vall dHebron Hosp, Dept Pathol, Barcelona 08035, Spain
[6] Univ Autonoma Barcelona, Dept Morphol Sci, Barcelona 08193, Spain
[7] Parc Salut Mar, Dept Urol, Barcelona 08003, Spain
[8] Hosp Badalona Germans Trias & Pujol, Dept Urol, Badalona 08916, Spain
[9] Vall Hebron Res Inst, Urol Res Grp, Barcelona 08035, Spain
[10] Univ Zaragoza, Escuela Univ Politecn La Almunia, Dept Appl Math, Zaragoza 50100, Spain
关键词
clinically significant prostate cancer; magnetic resonance imaging; predictive model; risk calculator; ANTIGEN DENSITY; RISK; BIOPSY; MRI; PARAMETERS; PATHOLOGY; PART; MEN;
D O I
10.3390/cancers14061589
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Magnetic-resonance-imaging-based predictive models (MRI-PMs) improve the MRI prediction of clinically significant prostate cancer (csPCa) in prostate biopsies. Risk calculators (RC) provide easy individual assessment of csPCa likelihood. MRI-PMs have been analysed in overall populations of men suspected to have PCa, but they have never been analysed according to the prostate imaging-report and data system (PI-RADS) categories. Therefore, the true clinical usefulness of MRI-PMs regarding the specific PI-RADS categories is unknown. A new and externally validated MRI-PM for csPCa was developed in the metropolitan area of Barcelona, and a web-RC designed with the new option of selecting the csPCa probability threshold. The development cohort comprised 1486 men scheduled to undergo a 3-tesla multiparametric MRI (mpMRI) and guided and/or systematic biopsies in one academic institution of Barcelona. The external validation cohort comprised 946 men in whom the same diagnostic approach was carried out as in the development cohort, in two other academic institutions of the same metropolitan area. CsPCa was detected in 36.9% of men in the development cohort and 40.8% in the external validation cohort (p = 0.054). The area under the curve of mpMRI increased from 0.842 to 0.897 in the developed MRI-PM (p < 0.001), and from 0.743 to 0.858 in the external validation cohort (p < 0.001). A selected 15% threshold avoided 40.1% of prostate biopsies and missed 5.4% of the 36.9% csPCa detected in the development cohort. In men with PI-RADS <3, 4.3% would be biopsied and 32.3% of all existing 4.2% of csPCa would be detected. In men with PI-RADS 3, 62% of prostate biopsies would be avoided and 28% of all existing 12.4% of csPCa would be undetected. In men with PI-RADS 4, 4% of prostate biopsies would be avoided and 0.6% of all existing 43.1% of csPCa would be undetected. In men with PI-RADS 5, 0.6% of prostate biopsies would be avoided and none of the existing 42.0% of csPCa would be undetected. The Barcelona MRI-PM presented good performance on the overall population; however, its clinical usefulness varied regarding the PI-RADS category. The selection of csPCa probability thresholds in the designed RC may facilitate external validation and outperformance of MRI-PMs in specific PI-RADS categories.
引用
收藏
页数:13
相关论文
共 38 条
[1]   Shape Analysis of Peripheral Zone Observations on Prostate DWI: Correlation to Histopathology Outcomes After Radical Prostatectomy [J].
Abreu-Gomez, Jorge ;
Wu, Mark ;
McInnes, Matthew D. F. ;
Thornhill, Rebecca E. ;
Flood, Trevor A. ;
Schieda, Nicola .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 214 (06) :1239-1247
[2]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[3]   Prediction of High-grade Prostate Cancer Following Multiparametric Magnetic Resonance Imaging: Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculators [J].
Alberts, Arnout R. ;
Roobol, Monique J. ;
Verbeek, Jan F. M. ;
Schoots, Ivo G. ;
Chiu, Peter K. ;
Osses, Daniel F. ;
Tijsterman, Jasper D. ;
Beerlage, Harrie P. ;
Mannaerts, Christophe K. ;
Schimmoeller, Lars ;
Albers, Peter ;
Arsov, Christian .
EUROPEAN UROLOGY, 2019, 75 (02) :310-318
[4]   Serum and urine biomarkers for detecting clinically significant prostate cancer [J].
Becerra, Maria F. ;
Atluri, Venkatasai S. ;
Bhattu, Amit S. ;
Punnen, Sanoj .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2021, 39 (10) :686-690
[5]   Prediction of Prostate Cancer Risk Among Men Undergoing Combined MRI-targeted and Systematic Biopsy Using Novel Pre-biopsy Nomograms That Incorporate MRI Findings [J].
Bjurlin, Marc A. ;
Rosenkrantz, Andrew B. ;
Sarkar, Saradwata ;
Lepor, Herbert ;
Huang, William C. ;
Huang, Richard ;
Venkataraman, Rajesh ;
Taneja, Samir S. .
UROLOGY, 2018, 112 :112-119
[6]   A predictive model based on biparametric magnetic resonance imaging and clinical parameters for improved risk assessment and selection of biopsy-naive men for prostate biopsies [J].
Boesen, Lars ;
Thomsen, Frederik B. ;
Norgaard, Nis ;
Logager, Vibeke ;
Balslev, Ingegerd ;
Bisbjerg, Rasmus ;
Thomsen, Henrik S. ;
Jakobsen, Henrik .
PROSTATE CANCER AND PROSTATIC DISEASES, 2019, 22 (04) :609-616
[7]   How to implement magnetic resonance imaging before prostate biopsy in clinical practice: nomograms for saving biopsies [J].
Borque-Fernando, Angel ;
Mariano Esteban, Luis ;
Celma, Ana ;
Roche, Sarai ;
Planas, Jacques ;
Regis, Lucas ;
de Torres, Ines ;
Eugenia Semidey, Maria ;
Trilla, Enrique ;
Morote, Juan .
WORLD JOURNAL OF UROLOGY, 2020, 38 (06) :1481-1491
[8]   MRI grading for the prediction of prostate cancer aggressiveness [J].
Boschheidgen, M. ;
Schimmoeller, L. ;
Arsov, C. ;
Ziayee, F. ;
Morawitz, J. ;
Valentin, B. ;
Radke, K. L. ;
Giessing, M. ;
Esposito, I ;
Albers, P. ;
Antoch, G. ;
Ullrich, T. .
EUROPEAN RADIOLOGY, 2022, 32 (04) :2351-2359
[9]  
Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1136/bmj.h5527, 10.1373/clinchem.2015.246280, 10.1148/radiol.2015151516]
[10]   Prostate Cancer Risk Calculator Apps in a Taiwanese Population Cohort: Validation Study [J].
Chen, I-Hsuan Alan ;
Chu, Chi-Hsiang ;
Lin, Jen-Tai ;
Tsai, Jeng-Yu ;
Yu, Chia-Cheng ;
Sridhar, Ashwin Narasimha ;
Sooriakumaran, Prasanna ;
Loureiro, Rui C., V ;
Chand, Manish .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (12)