Research on Dynamics Parameter Identification of Limb for Rehabilitation Robot

被引:0
作者
Guo, X. B. [1 ]
Zhai, Y. [1 ]
机构
[1] Henan Polytech Univ, Sch Mech & Power Engn, Jiaozuo, Peoples R China
来源
MANUFACTURING AUTOMATION TECHNOLOGY DEVELOPMENT | 2011年 / 455卷
关键词
Parameter Identification; BP Artificial Neutral Network; Limb Dynamics; Spasm; Rehabilitation Robot; THERAPY;
D O I
10.4028/www.scientific.net/KEM.455.585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because of rehabilitants with various characteristics, rehabilitation robot must perceive the rehabilitant states(strength and position) and then adopt corresponding training mode and control strategy. So how to obtain the state of a rehabilitative limb correctly is very significant for a rehabilitation robot during the training. A new method of dynamics parameter identification of limb based on BP (back propagation) artificial neutral network is presented to offer rehabilitation robot dependable information of limb. The simulation results prove that the method of parameter identification can achieve the state of a rehabilitation limb veraciously and robustly. It can suit different rehabilitants at different stages of rehabilitation even if a spasm happens during training.
引用
收藏
页码:585 / 589
页数:5
相关论文
共 50 条
[21]   Control strategies for lower limb rehabilitation robot [J].
Chen, Jiangcheng ;
Zhang, Xiaodong ;
Wang, He ;
Shi, Qiangyong ;
Li, Rui .
2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2014, :121-125
[22]   A novel backstepping adaptive impedance control for an upper limb rehabilitation robot [J].
Bai, Jing ;
Song, Aiguo ;
Wang, Ting ;
Li, Huijun .
COMPUTERS & ELECTRICAL ENGINEERING, 2019, 80
[23]   Design and Research of 7-DOF upper-limb rehabilitation robot flexible joint [J].
Ma, Xinpo ;
Yang, Qizhi ;
Cai, Jing ;
Sun, Mengtao ;
Song, Junpeng .
IEEE ICARM 2016 - 2016 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM), 2016, :614-619
[24]   An exoskeleton upper limb rehabilitation robot based on electroencephalography [J].
Wang, Jianbin .
MCB Molecular and Cellular Biomechanics, 2024, 21
[25]   Synthesis and experiment of a lower limb exoskeleton rehabilitation robot [J].
Li, Jian ;
Chen, Diansheng ;
Tao, Chunjing ;
Li, Hui .
INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2017, 44 (03) :264-274
[26]   Passive Training Control for the Lower Limb Rehabilitation Robot [J].
Lv, Xianyao ;
Yang, Chifu ;
Li, Xiang ;
Han, Junwei ;
Jiang, Feng .
2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2017, :904-909
[27]   Compound lower limb vibration training rehabilitation robot [J].
Yin, Qiang ;
Hu, Ao ;
Li, Qian ;
Wei, Xin ;
Yang, Hongjun ;
Wang, Beihai ;
Zhang, Guoquan .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (06)
[28]   A Kinematic Model of an Upper Limb Rehabilitation Robot System [J].
Guo, Shuxiang ;
Zhang, Wu ;
Wei, Wei ;
Guo, Jian ;
Ji, Yuehui ;
Wang, Yunliang .
2013 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2013, :968-973
[29]   Dual-Modal Hybrid Control for an Upper-Limb Rehabilitation Robot [J].
Feng, Guang ;
Zhang, Jiaji ;
Zuo, Guokun ;
Li, Maoqin ;
Jiang, Dexin ;
Yang, Lei .
MACHINES, 2022, 10 (05)
[30]   Industrial Robot Kinematics Parameter Identification [J].
Zhang, Yonggui ;
Liu, Chenrong ;
Liu, Peng .
ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES IV, PTS 1 AND 2, 2014, 889-890 :1136-1143