Leibniz Algebras Associated with Representations of Euclidean Lie Algebra

被引:0
作者
Adashev, J. Q. [1 ]
Omirov, B. A. [2 ]
Uguz, S. [3 ]
机构
[1] Uzbek Acad Sci, Inst Math, M Ulugbek Str 81, Tashkent 100170, Uzbekistan
[2] Natl Univ Uzbekistan, Univ Str 4, Tashkent 100174, Uzbekistan
[3] Harran Univ, Dept Math, Arts & Sci Fac, TR-63120 Sanliurfa, Turkey
关键词
Leibniz algebra; Euclidean lie algebra; Diamond lie algebra; Representation of euclidean lie algebra; Fock module; CLASSIFICATION;
D O I
10.1007/s10468-018-09849-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we describe Leibniz algebras with three-dimensional Euclidean Lie algebra e(2) as its liezation. Moreover, it is assumed that the ideal generated by the squares of elements of an algebra (denoted by I) as a right e(2)-module is associated to representations of e(2) in sl(2)(C) circle plus sl(2)(C), sl(3)(C) and sp(4)(C). Furthermore, we present the classification of Leibniz algebras with general Euclidean Lie algebra e(n) as its liezation I being an (n + 1)-dimensional right e(n)-module defined by transformations of matrix realization of e(n). Finally, we extend the notion of a Fock module over Heisenberg Lie algebra to the case of Diamond Lie algebra D-k and describe the structure of Leibniz algebras with corresponding Lie algebra D-k and with the ideal I considered as a Fock D-k-module.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 50 条
[41]   Conformal oscillator representations of orthogonal Lie algebras [J].
Xu XiaoPing .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (01) :37-48
[42]   Extensions of the conformal representations for orthogonal Lie algebras [J].
Xu, Xiaoping ;
Zhao, Yufeng .
JOURNAL OF ALGEBRA, 2013, 377 :97-124
[43]   3-Filiform Leibniz algebras of maximum length, whose naturally graded algebras are Lie algebras [J].
Camacho, L. M. ;
Canete, E. M. ;
Gomez, J. R. ;
Omirov, B. A. .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (09) :1039-1058
[44]   On a complete rigid Leibniz non-Lie algebra in arbitrary dimension [J].
Ancochea Bermudez, J. M. ;
Campoamor-Stursberg, R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) :3397-3407
[45]   Leibniz algebras constructed by Witt algebras [J].
Camacho, L. M. ;
Omirov, B. A. ;
Kurbanbaev, T. K. .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10) :2048-2064
[46]   On complete Leibniz algebras [J].
Ayupov, Sh A. ;
Khudoyberdiyev, A. Kh ;
Shermatova, Z. Kh .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (02) :265-288
[47]   Nilpotency degree of the nilradical of a solvable Lie algebra on two generators and uniserial modules associated to free nilpotent Lie algebras [J].
Cagliero, Leandro ;
Levstein, Fernando ;
Szechtman, Fernando .
JOURNAL OF ALGEBRA, 2021, 585 :447-483
[48]   Representations of the q-Klein-bottle Lie algebra [J].
Jiang, Jingjing .
JOURNAL OF ALGEBRA, 2022, 591 :36-58
[49]   Representations of toroidal and full toroidal Lie algebras over polynomial algebras [J].
Tantubay, Santanu ;
Chakraborty, Priyanshu .
JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (07)
[50]   On the Structure of the Algebra of Derivations for Some Low-Dimensional Leibniz Algebras [J].
Kurdachenko, Leonid ;
Semko, Mykola ;
Yashchuk, Viktoriya .
UKRAINIAN MATHEMATICAL JOURNAL, 2024, 76 (05) :816-832