Leibniz Algebras Associated with Representations of Euclidean Lie Algebra

被引:0
作者
Adashev, J. Q. [1 ]
Omirov, B. A. [2 ]
Uguz, S. [3 ]
机构
[1] Uzbek Acad Sci, Inst Math, M Ulugbek Str 81, Tashkent 100170, Uzbekistan
[2] Natl Univ Uzbekistan, Univ Str 4, Tashkent 100174, Uzbekistan
[3] Harran Univ, Dept Math, Arts & Sci Fac, TR-63120 Sanliurfa, Turkey
关键词
Leibniz algebra; Euclidean lie algebra; Diamond lie algebra; Representation of euclidean lie algebra; Fock module; CLASSIFICATION;
D O I
10.1007/s10468-018-09849-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we describe Leibniz algebras with three-dimensional Euclidean Lie algebra e(2) as its liezation. Moreover, it is assumed that the ideal generated by the squares of elements of an algebra (denoted by I) as a right e(2)-module is associated to representations of e(2) in sl(2)(C) circle plus sl(2)(C), sl(3)(C) and sp(4)(C). Furthermore, we present the classification of Leibniz algebras with general Euclidean Lie algebra e(n) as its liezation I being an (n + 1)-dimensional right e(n)-module defined by transformations of matrix realization of e(n). Finally, we extend the notion of a Fock module over Heisenberg Lie algebra to the case of Diamond Lie algebra D-k and describe the structure of Leibniz algebras with corresponding Lie algebra D-k and with the ideal I considered as a Fock D-k-module.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 50 条
  • [21] Irreducible representations over the diamond Lie algebra
    Liu, Dong
    Pei, Yufeng
    Xia, Limeng
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 143 - 148
  • [22] The Schur Lie-multiplier of Leibniz algebras
    Casas, J. M.
    Insua, M. A.
    QUAESTIONES MATHEMATICAE, 2018, 41 (07) : 917 - 936
  • [23] LEIBNIZ ALGEBRAS WITH INVARIANT BILINEAR FORMS AND RELATED LIE ALGEBRAS
    Benayadi, Said
    Hidri, Samiha
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3538 - 3556
  • [24] On the structure of the algebra of derivations of cyclic Leibniz algebras
    Kurdachenko, L. A.
    Semko, M. M.
    Yashchuk, V. S.
    ALGEBRA AND DISCRETE MATHEMATICS, 2021, 32 (02): : 241 - 252
  • [25] Lie-Isoclinism of Pairs of Leibniz Algebras
    Riyahi, Zahra
    Casas Miras, Jose Manuel
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 283 - 296
  • [26] About Leibniz cohomology and deformations of Lie algebras
    Fialowski, A.
    Magnin, L.
    Mandal, A.
    JOURNAL OF ALGEBRA, 2013, 383 : 63 - 77
  • [27] Solvable Leibniz algebras whose nilradical is a quasi-filiform Leibniz algebra of maximum length
    Abdurasulov, Kobiljon K.
    Adashev, Jobir Q.
    Casas, Jose M.
    Omirov, Bakhrom A.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1578 - 1594
  • [28] Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals
    Muratova, Kh. A.
    Ladra, M.
    Omirov, B. A.
    Sattarov, A. M.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3525 - 3542
  • [29] Electrical Lie algebras, the Schrodinger algebras and their representations
    Cai, Yan-an
    Yan, Huimin
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 181
  • [30] A study of n-Lie-isoclinic Leibniz algebras
    Biyogmam, G. R.
    Casas, J. M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)