Dark excitons in transition metal dichalcogenides

被引:174
|
作者
Malic, Ermin [1 ]
Selig, Malte [2 ]
Feierabend, Maja [1 ]
Brem, Samuel [1 ]
Christiansen, Dominik [2 ]
Wendler, Florian [2 ]
Knorr, Andreas [2 ]
Berghaeuser, Gunnar [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, Gothenburg, Sweden
[2] Tech Univ Berlin, Inst Theoret Phys, Berlin, Germany
来源
PHYSICAL REVIEW MATERIALS | 2018年 / 2卷 / 01期
基金
瑞典研究理事会;
关键词
SEMICONDUCTORS;
D O I
10.1103/PhysRevMaterials.2.014002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monolayer transition metal dichalcogenides (TMDs) exhibit a remarkably strong Coulomb interaction that manifests in tightly bound excitons. Due to the complex electronic band structure exhibiting several spin-split valleys in the conduction and valence band, dark excitonic states can be formed. They are inaccessibly by light due to the required spin-flip and/or momentum transfer. The relative position of these dark states with respect to the optically accessible bright excitons has a crucial impact on the emission efficiency of these materials and thus on their technological potential. Based on the solution of the Wannier equation, we present the excitonic landscape of the most studied TMD materials including the spectral position of momentum- and spin-forbidden excitonic states. We show that the knowledge of the electronic dispersion does not allow to conclude about the nature of the material's band gap since excitonic effects can give rise to significant changes. Furthermore, we reveal that an exponentially reduced photoluminescence yield does not necessarily reflect a transition from a direct to a nondirect gap material, but can be ascribed in most cases to a change of the relative spectral distance between bright and dark excitonic states.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides
    Molas, M. R.
    Faugeras, C.
    Slobodeniuk, A. O.
    Nogajewski, K.
    Bartos, M.
    Basko, D. M.
    Potemski, M.
    2D MATERIALS, 2017, 4 (02):
  • [2] Dark excitons and the elusive valley polarization in transition metal dichalcogenides
    Baranowski, M.
    Surrente, A.
    Maude, D. K.
    Ballottin, M.
    Mitioglu, A. A.
    Christianen, P. C. M.
    Kung, Y. C.
    Dumcenco, D.
    Kis, A.
    Plochocka, P.
    2D MATERIALS, 2017, 4 (02):
  • [3] Spatial Imaging and Control of Dark Excitons in Monolayer Transition Metal Dichalcogenides
    Zhang, Chuanyi
    Gao, Yang
    Zhang, Weifeng
    Zhang, Zhenyu
    NANO LETTERS, 2023, 23 (24) : 11424 - 11429
  • [4] Excitons in monolayer transition metal dichalcogenides
    Li, J.
    Zhong, Y. L.
    Zhang, Dong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (31)
  • [5] Brightening of spin- and momentum-dark excitons in transition metal dichalcogenides
    Feierabend, Maja
    Brem, Samuel
    Ekman, August
    Malic, Ermin
    2D MATERIALS, 2021, 8 (01)
  • [6] Signatures of dark excitons in exciton-polariton optics of transition metal dichalcogenides
    Ferreira, Beatriz
    Rosati, Roberto
    Fitzgerald, Jamie M.
    Malic, Ermin
    2D MATERIALS, 2023, 10 (01)
  • [7] EXCITONS AND PHOTOCONDUCTIVITY IN TRANSITION-METAL DICHALCOGENIDES
    WIETING, TJ
    YOFFE, AD
    PHYSICA STATUS SOLIDI, 1970, 37 (01): : 353 - &
  • [8] Formation of dark excitons in monolayer transition metal dichalcogenides by a vortex beam: Optical selection rules
    Abdurazakov, Omadillo
    Li, Chunqiang
    Shim, Yun-Pil
    PHYSICAL REVIEW B, 2023, 108 (12)
  • [9] Ultrafast dynamics in monolayer transition metal dichalcogenides: Interplay of dark excitons, phonons, and intervalley exchange
    Selig, Malte
    Katsch, Florian
    Schmidt, Robert
    de Vasconcellos, Steffen Michaelis
    Bratschitsch, Rudolf
    Malic, Ermin
    Knorr, Andreas
    PHYSICAL REVIEW RESEARCH, 2019, 1 (02):
  • [10] Chiral topological excitons in the monolayer transition metal dichalcogenides
    Gong, Z. R.
    Luo, W. Z.
    Jiang, Z. F.
    Fu, H. C.
    SCIENTIFIC REPORTS, 2017, 7