Energy harvesting and storage devices fused into various patterns

被引:23
|
作者
Sun, Hao [1 ]
Jiang, Yishu [1 ]
Qiu, Longbin [1 ]
You, Xiao [1 ]
Yang, Jiahua [1 ]
Fu, Xuemei [1 ]
Chen, Peining [1 ]
Guan, Guozhen [1 ]
Yang, Zhibin [1 ]
Sun, Xuemei [1 ]
Peng, Huisheng [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci & Lab Adv Mat, Collaborat Innovat Ctr Polymers & Polymer Composi, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
关键词
ALL-SOLID-STATE; HIGH-PERFORMANCE; PHOTOELECTRIC CONVERSION; ION BATTERIES; SOLAR-CELLS; GRAPHENE; SUPERCAPACITORS; COMPOSITE; TRANSPARENT; NANOTUBES;
D O I
10.1039/c5ta03235k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conventional connection of energy devices by electrically conducting wires is less efficient and inconvenient, even unavailable in many applications. Herein, a general and effective method is developed to connect energy harvesting or/and storage devices by simply stacking and gently pressing them. The energy devices are touched together and then rapidly fused into one by incorporating an electrically conducting carbon nanotube sheet and a self-healing polymer into a ladder structure. Flexible supercapacitors, perovskite solar cells and their integrated devices are demonstrated. Supercapacitors are fused into various patterns with tunable capacitances, perovskite solar cells are fused into one in series with linearly increasing output voltages, and supercapacitors and perovskite solar cells are also fused into an integrated device to simultaneously realize energy conversion and storage.
引用
收藏
页码:14977 / 14984
页数:8
相关论文
共 50 条
  • [21] 3D Printing of Tunable Energy Storage Devices with Both High Areal and Volumetric Energy Densities
    Gao, Tingting
    Zhou, Zhan
    Yu, Jianyong
    Zhao, Jing
    Wang, Guiling
    Cao, Dianxue
    Ding, Bin
    Li, Yiju
    ADVANCED ENERGY MATERIALS, 2019, 9 (08)
  • [22] A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ
    Gall, Oren Z.
    Meng, Chuizhou
    Bhamra, Hansraj
    Mei, Henry
    John, Simon W. M.
    Irazoqui, Pedro P.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (03) : 1360 - 1373
  • [23] Energy Harvesting and Storage Devices through Intelligent Flexographic Technology: A Review Article
    Habis, Nuha Al
    Khushaim, Muna
    Nabat Al-Ajrash, Saja M. M.
    ENERGIES, 2023, 16 (02)
  • [24] Energy Harvesting Untethered Soft Electronic Devices
    Kim, Kyun Kyu
    Choi, Joonhwa
    Ko, Seung Hwan
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (17)
  • [25] Conjugated Polymers for Flexible Energy Harvesting and Storage
    Zhang, Zhitao
    Liao, Meng
    Lou, Huiqing
    Hu, Yajie
    Sun, Xuemei
    Peng, Huisheng
    ADVANCED MATERIALS, 2018, 30 (13)
  • [26] A Critical Review on the Voltage Requirement in Hybrid Cells with Solar Energy Harvesting and Energy Storage Capability
    Takshi, Arash
    Aljafari, Belqasem
    Kareri, Tareq
    Stefanakos, Elias
    BATTERIES & SUPERCAPS, 2021, 4 (02) : 252 - 267
  • [27] Recent progress in integrated functional electrochromic energy storage devices
    Wang, Hao
    Yao, Chang-Jiang
    Nie, Hai-Jing
    Yang, Li
    Mei, Shilin
    Zhang, Qichun
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (44) : 15507 - 15525
  • [28] Multivalent-Ion Electrochromic Energy Saving and Storage Devices
    Tong, Zhongqiu
    Zhu, Xing
    Xu, Hongbo
    Li, Zhishan
    Li, Shaoyuan
    Xi, Fengshuo
    Kang, Tianxing
    Ma, Wenhui
    Lee, Chun-Sing
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [29] Applications of carbon quantum dots in electrochemical energy storage devices
    Arora, Grishika
    Sabran, Nuur Syahidah
    Ng, Chai Yan
    Low, Foo Wah
    Jun, H. K.
    HELIYON, 2024, 10 (15)
  • [30] Energy Harvesting and Storage Solutions for Low-Power IoT Devices in Livestock Industry
    Barreto, Nicolas
    Oreggioni, Julian
    Steinfeld, Leonardo
    15TH IEEE LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS, LASCAS 2024, 2024, : 320 - 324