Constructions of coupling processes for Levy processes

被引:22
|
作者
Boettcher, Bjoern [1 ]
Schilling, Rene L. [1 ]
Wang, Jian [1 ,2 ]
机构
[1] Tech Univ Dresden, Inst Math Stochast, D-01062 Dresden, Germany
[2] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
关键词
Coupling; Levy process; Subordinate Brownian motion; Bernstein function; INEQUALITY;
D O I
10.1016/j.spa.2011.02.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct optimal Markov couplings of Levy processes, whose Levy (jump) measure has an absolutely continuous component. The construction is based on properties of subordinate Brownian motions and the coupling of Brownian motions by reflection. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1201 / 1216
页数:16
相关论文
共 50 条
  • [1] Constructions of coupling processes for Levy processes (vol 121, pg 1201, 2011)
    Boettcher, Bjoern
    Schilling, Rene L.
    Wang, Jian
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2711 - 2714
  • [2] IDT processes and associated Levy processes with explicit constructions
    Hakassou, Antoine
    Ouknine, Youssef
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (06) : 1073 - 1111
  • [3] On the coupling property of Levy processes
    Schilling, Rene L.
    Wang, Jian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 1147 - 1159
  • [4] 2 UNIFORM INTRINSIC CONSTRUCTIONS FOR THE LOCAL TIME OF A CLASS OF LEVY PROCESSES
    BARLOW, MT
    PERKINS, EA
    TAYLOR, SJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (01) : 19 - 65
  • [5] LEVY PROCESSES AND LEVY SYSTEMS
    MILLAR, PW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A203 - A203
  • [6] Coupling property and gradient estimates of Levy processes via the symbol
    Schilling, Rene L.
    Sztonyk, Pawel
    Wang, Jian
    BERNOULLI, 2012, 18 (04) : 1128 - 1149
  • [7] Prabhakar Levy processes
    Gajda, Janusz
    Beghin, Luisa
    STATISTICS & PROBABILITY LETTERS, 2021, 178
  • [8] Viscoelasticity and Levy processes
    Bouleau, N
    POTENTIAL ANALYSIS, 1999, 11 (03) : 289 - 302
  • [9] Increase of Levy processes
    Doney, RA
    ANNALS OF PROBABILITY, 1996, 24 (02): : 961 - 970
  • [10] COMBINATORIAL LEVY PROCESSES
    Crane, Harry
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (01): : 285 - 339