Head motion measurement and correction using FID navigators

被引:50
作者
Wallace, Tess E. [1 ]
Afacan, Onur [1 ]
Waszak, Maryna [2 ,3 ,4 ]
Kober, Tobias [2 ,3 ,4 ]
Warfield, Simon K. [1 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Dept Radiol, Computat Radiol Lab, Boston, MA USA
[2] Siemens Healthcare AG, Adv Clin Imaging Technol, Lausanne, Switzerland
[3] Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, LTS5, Lausanne, Switzerland
关键词
coil sensitivity profile; FID navigators; motion correction; MRI motion measurement; HUMAN BRAIN; RETROSPECTIVE CORRECTION; IMAGE QUALITY; MRI; COIL; REDUCTION; ACCURACY; ARTIFACTS; SENSE;
D O I
10.1002/mrm.27381
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop a novel framework for rapid, intrinsic head motion measurement in MRI using FID navigators (FIDnavs) from a multichannel head coil array. Methods: FIDnavs encode substantial rigid-body motion information; however, current implementations require patient-specific training with external tracking data to extract quantitative positional changes. In this work, a forward model of FIDnav signals was calibrated using simulated movement of a reference image within a model of the spatial coil sensitivities. A FIDnav module was inserted into a nonselective 3D FLASH sequence, and rigid-body motion parameters were retrospectively estimated every readout time using nonlinear optimization to solve the inverse problem posed by the measured FIDnavs. This approach was tested in simulated data and in 7 volunteers, scanned at 3T with a 32-channel head coil array, performing a series of directed motion paradigms. Results: FIDnav motion estimates achieved mean absolute errors of 0.34 +/- 0.49 mm and 0.52 +/- 0.61 degrees across all subjects and scans, relative to ground-truth motion measurements provided by an electromagnetic tracking system. Retrospective correction with FIDnav motion estimates resulted in substantial improvements in quantitative image quality metrics across all scans with intentional head motion. Conclusions: Quantitative rigid-body motion information can be effectively estimated using the proposed FIDnav-based approach, which represents a practical method for retrospective motion compensation in less cooperative patient populations.
引用
收藏
页码:258 / 274
页数:17
相关论文
共 50 条
  • [21] Real-time motion and retrospective coil sensitivity correction for CEST using volumetric navigators (vNavs) at 7T
    Poblador Rodriguez, Esau
    Moser, Philipp
    Auno, Sami
    Eckstein, Korbinian
    Dymerska, Barbara
    van der Kouwe, Andre
    Gruber, Stephan
    Trattnig, Siegfried
    Bogner, Wolfgang
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (04) : 1909 - 1923
  • [22] Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
    Tisdall, M. Dylan
    Hess, Aaron T.
    Reuter, Martin
    Meintjes, Ernesta M.
    Fischl, Bruce
    van der Kouwe, Andre J. W.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (02) : 389 - 399
  • [23] Network Accelerated Motion Estimation and Reduction (NAMER): Convolutional neural network guided retrospective motion correction using a separable motion model
    Haskell, Melissa W.
    Cauley, Stephen F.
    Bilgic, Berkin
    Hossbach, Julian
    Splitthoff, Daniel N.
    Pfeuffer, Josef
    Setsompop, Kawin
    Wald, Lawrence L.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (04) : 1452 - 1461
  • [24] Prospective Real-Time Correction for Arbitrary Head Motion Using Active Markers
    Ooi, Melvyn B.
    Krueger, Sascha
    Thomas, William J.
    Swaminathan, Srirama V.
    Brown, Truman R.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (04) : 943 - 954
  • [25] Measurement and Correction of Microscopic Head Motion during Magnetic Resonance Imaging of the Brain
    Maclaren, Julian
    Armstrong, Brian S. R.
    Barrows, Robert T.
    Danishad, K. A.
    Ernst, Thomas
    Foster, Colin L.
    Gumus, Kazim
    Herbst, Michael
    Kadashevich, Ilja Y.
    Kusik, Todd P.
    Li, Qiaotian
    Lovell-Smith, Cris
    Prieto, Thomas
    Schulze, Peter
    Speck, Oliver
    Stucht, Daniel
    Zaitsev, Maxim
    [J]. PLOS ONE, 2012, 7 (11):
  • [26] Optimizing the acceleration and resolution of three-dimensional fat image navigators for high-resolution motion correction at 7T
    Gallichan, Daniel
    Marques, Jose P.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (02) : 547 - 558
  • [27] Rapid and accurate navigators for motion and B0 tracking using QUEEN: Quantitatively enhanced parameter estimation from navigators
    Brackenier, Yannick
    Wang, Nan
    Liao, Congyu
    Cao, Xiaozhi
    Schauman, Sophie
    Yurt, Mahmut
    Cordero-Grande, Lucilio
    Malik, Shaihan J.
    Kerr, Adam
    Hajnal, Joseph V.
    Setsompop, Kawin
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (05) : 2028 - 2043
  • [28] Correction of motion tracking errors for PET head rigid motion correction
    Miranda, Alan
    Kroll, Tina
    Schweda, Vanessa
    Staelens, Steven
    Verhaeghe, Jeroen
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17)
  • [29] Volumetric navigators for real-time motion correction in diffusion tensor imaging
    Alhamud, A.
    Tisdall, M. Dylan
    Hess, Aaron T.
    Hasan, Khader M.
    Meintjes, Ernesta M.
    van der Kouwe, Andre J. W.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (04) : 1097 - 1108
  • [30] Nonrigid motion correction in 3D using autofocusing withlocalized linear translations
    Cheng, Joseph Y.
    Alley, Marcus T.
    Cunningham, Charles H.
    Vasanawala, Shreyas S.
    Pauly, John M.
    Lustig, Michael
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) : 1785 - 1797